Discharge quenching mechanism and RPWELL performance with tunable 3D printed resistive plates

Luca Moleri - Abhik Jash - 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors CERN, 8th November 2023

Discharge quenching and resistive materials Motivation for the present study

- At present the available selection of resistive plate materials is small (e.g. <u>Semitron ESD 225</u>, <u>semiconductive glass</u>*)
- Classic resistive materials have fixed resistivity (at fixed temperature) \rightarrow no optimization wrt rate and quenching power
- The physics of discharge quenching and the effect of quenched discharges on detectors is still not well understood
- In this work we
 - 1. Produce and characterize 3D printed resistive plates with tunable resistivity
 - 2. Use classic and tunable resistive plates to investigate discharge quenching effects (quenching power, charge persistence, discharge probability, gain variations)

* Wang, Y., Wang, J., Yan, Q., Li, Y. and Cheng, J., 2008, October. Study on the performance of high rating MRPC. In 2008 IEEE Nuclear Science Symposium Conference Record (pp. 913-916). IEEE.

Luca Moleri - 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors CERN, 8th November 2023

3D printed resistive plates with tunable resistivity

- <u>3DXSTAT</u>TM ESD ABS (Acrylonitrile Butadiene Styrene)
- Conductive additive: embedded multi-wall carbon nano-tubes (CNT)
- Printed with standard FDM 3D printer. Hot base and extruder nozzle temperature are inversely proportional to sample resistivity (min ~10⁵ Ω cm)
- Samples of different thickness and resistivity were produced by 3D & functional printing center @HUJI

Luca Moleri - 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors CERN, 8th November 2023

SEM images by Xiaomeng Sui @WIS. Directionality of filament deposition and of CNT distribution are clearly visible.

3D printed resistive plates characterization: variable T and thickness

- RP characteristics are not predictable as a function of T only. Large variability from plate to plate
- Need a dedicated measurement of surface and bulk resistance for each anode
- Surface resistance of hot plate side increases quite consistently for thicker plates (labels) while **bulk resistivity** fluctuates. Batch 2 with t= 2 mm sample shows exceptionally high resistivity. (Semitron and semiconductive glass are referenced).
- Surfaces are important, bulk measurements are not enough to characterize samples

Luca Moleri - 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors CERN, 8th November 2023

R surface $[M\Omega]$

	0	.7
	2	

The RPWELL detector characterization of gain and electrical breakdown

- RP+anode at ground potential. During a quenched discharge the hole region is charged up with ~10nC, resulting in a local potential change relative to the effective capacitance involved*
- When gas breakdown occurs:
 - Large current pulse is induced on Anode and WELL-top
 - **DC current** is produced by detector capacitance \bullet discharge between WELL and anode
- Amplitude of anode pulses is calibrated to measure induced charge from gas breakdown
- Power supply currents are recorded and integrated to measure discharge intensity
- RPWELL gain is monitored as a function of time and \bullet source rate

Setup for characterization of RPWELL gain and electrical breakdown

*Jash, A., Moleri, L. and Bressler, S., 2022. Electrical breakdown in Thick-GEM based WELL detectors. Journal of Instrumentation, 17(11), p.P11004.

The RPWELL detector Gain vs RP thickness 114 M Ω < R_s < 600 M Ω , 30 M Ω < R_b <150 M Ω

- maximum gain achieved ~ 1.5x10⁴ (translates to ~ 5x10⁶ e-, Raether limit?)
- Stopping measurement when spectrum gets distorted because of discharges or quenched discharges
- Max gain is higher, reaching saturated regime at larger RP thickness, R_s and R_b (how to disentangle the effects?)

In this resistivity range:

- Gain does not depend on RP thickness: RP is transparent like an insulator allowing induced signal across it but it does not affect the weighting field (no field within RP, like a conductor)
- Rate dependance is mildly affected by thickness, and by bulk and surface resistance (caveat - might be different if current through entire electrode area)

The RPWELL detector Gain vs resistivity $15 M\Omega < R_s < 33 G\Omega$, $9 M\Omega < R_b < 2.5 GΩ$

- Lower gain at higher resistivity values could be due both to a rate effect and to weighting field. A measurement in current mode should allow distinguishing the two.
- Rate dependance is mild, except for the most resistive sample (R_s = 33 G Ω , R_b = 2.5 G Ω , ρ = 880 M Ω cm)
- Gain saturation regime starts: $15 M\Omega < R_s < 600 M\Omega$ $9 M\Omega < R_b < 150 M\Omega$ $4 M\Omega cm < \rho < 66 M\Omega cm$

Discharge characterization Power supply currents

Three different discharge regimes identified

1) Non quenching region:

 $R_{bulk} < 50 M\Omega$

- For THWELL discharge C_{well-RP}~nF (including HV cable and PS)
- Any RP allows reaching higher voltages with respect to THWELL (lower discharge probability)
- Thick (1.8 mm) ρ = 4 M Ω cm and thin (0.4mm) ρ = 48 M Ω cm plates can only mildly reduce discharge intensity

No RP (THWELL) - 1650 V

Luca Moleri - 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors CERN, 8th November 2023

Discharge

 ρ = 0.3 M Ω cm ABS 1.4 mm - 1750 V

 ρ = 4 M Ω cm ABS 1.8 mm - 1750 V

300

Discharge characterization Power supply currents

Three different discharge regimes identified

2) Transition region:

 $50 \text{ M}\Omega < \text{R}_{\text{bulk}} < 250 \text{ M}\Omega$

- Both quenched and non-quenched discharges
 - ~150-200 nC discharges (material defects?)
 - Quenched discharges ~10 nC (quite close to baseline noise)

3) Quenching region:

 $R_{bulk} \geq 250 M\Omega$

Only quenched discharges

Transition region

45 MΩ cm ABS 1.4 mm - 1800V — Cathode 1000 Cathod Ar:CO₂ (93:7) WELL-top Anode 800 Anode 600 150 nC-200 nC discharges ent (nA) 400 200 Cur -200 $R_{bulk} = 90 M\Omega$ $R_{bulk} = 2500 M\Omega$ -400 -6000 150 200 250 30 50 250 300 100 200 150 100 Time (s) Time (s) 15 Cathode — Cathode 10 nC quenched discharges ----- WELL-top — WELL-top — Anode Anode 10 10 nC quenched discharges (NA) 200 50 100 150 200 250

time (s)

Quenching region

880 MΩ cm ABS 2 mm - 1800V

Time (s)

Discharge characterization Power supply currents

- Similar discharge intensity for samples in transition region
- Discharge probability is similar for all tested resistive plates
- All resistive plates show discharge regime at higher voltage wrt THWELL

Discharge intensity from PS (non-quenched discharges only)

(non-quenched discharges only)

HV WELL [V]

Discharge characterization Induced pulses from gas breakdown

- Good indicator for guenched discharges
- Might affect electronics dead time and eventually burn sensitive readout

Luca Moleri - 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors CERN, 8th November 2023

Gas breakdown

- Gas breakdown probability does not seem dependent on resistivity and thickness
- Induced signal intensity mild dependance on voltage attributed to pileup

- Induced pulse intensity decreases with thickness and resistivity (in a similar way wrt R_{bulk} or R_{surface})
 - Due to weighting field reduction?

Charge evacuation in RP **Discharges' effect on gain**

- 3 mm strips, 6 mm between discharge and gain measurement
- Discharge rate 0.5 Hz 3 Hz
- Gain drop clearly visible for >10 discharges' bunches
- Fit gain recovery to $y = B exp((x-x_0)/\tau)$

*Rubin, A., Arazi, L., Bressler, S., Moleri, L., Pitt, M. and Breskin, A., 2013. First studies with the Resistive-Plate WELL gaseous multiplier. Journal of Instrumentation, 8(11), p.P11004.

Luca Moleri - 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors CERN, 8th November 2023

*Jash, A., Moleri, L. and Bressler, S., 2023. Electrical discharges and their effect in a Resistive Plate WELL detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1045, p.167540.

Gain recovery time independent on number of discharges

60

40

20

gain drop [ADC]

RWELL operation in cryogenic Ar vapor

- RWELL detector with DLC coated Kapton resistive layer*
 - Surface resistivity smoothly increasing at low temperatures
- Attempt to observe transition between quenching regimes as the resistivity varies in a continuous way
- Technique was ...
- Caveat many variables changing together (resistivity, voltage, gain, vapor density)

Observations:

- 4 regions with different quenching properties
- Discharge quenching effective between conductive and insulating regimes (300 M Ω/\Box 10 5 M Ω/\Box)
- Confirmed by measurements of scintillation light

Luca Moleri - 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors CERN, 8th November 2023

Presented by A. Tesi at MPGD22 conference: "Cryogenic RWELL: high gain with quenched discharges"

Main observations and next steps

Observations

- Resistive plates with tunable resistivity (surface and bulk) can be produced by 3D printing commercial plastic materials loaded with CNT
- Resistive plates with tunable resistivity provide a tool to investigate discharge quenching effects (quenching power, charge persistence, discharge probability, gain variations) and to understand the underlying physics
- Quenched and non- quenched discharges seem to be related to different processes: gas breakdown and capacitance discharge
- Quenched discharges can be studied by means of induced signals, which will also affect the detector operation (dead time, electronics damage)
- Any tested RP has an effect of reducing discharge probability with respect to THWELL. This should be explained.
- In the quenched regime, discharge probability and intensity seems not to depend on the RP resistance values.
- Charge evacuation time was measured by its effect on gain. The result is 3 orders of magnitude larger than what expected by a RC model. This deserves further investigation.

Next steps

- Implement methodologies from material science (e.g. Impedance spectroscopy) to investigate charge evacuation
- Explore other materials loaded with CNT

Thank you

Luca Moleri - 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors CERN, 8th November 2023

Backup

Resistive plates used in RPWELL Production batches and measured values

3DXSTAT ESD ABS (Acrylonitrile Butadiene Styrene)

Batch	Thickness [mm]	Bulk resistance (V _{test}) [MΩ]	Bulk resistivity [MΩ cm]	Surface resistance (100 V) [MΩ]	T[°] hot plate/nozzle
1	0.2	55	194 (250 V)	560	105/230
	1.4	0.6	0.3 (50 V)	3	
	1.8	9	3.5 (50 V)	15	
2	0.2	31	110 (50 V)	114	105/220
	0.4	27	48 (50 V)	63	
	0.8	65	57 (100 V)	179	
	1.4	90	45 (100 V)	280	
	1.6	150	66 (250 V)	599	
	2	2500	883 (1000 V)	33000	
3	0.8	100	88 (500 V)	380	105/215
	1.6	213	94 (500 V)	1200	

Luca Moleri - 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors CERN, 8th November 2023

3D printed resistive plates characterization: variable T and thickness

Luca Moleri - 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors CERN, 8th November 2023

- What is the relevant voltage to test samples?
 - During a discharge the local voltage in the area of a THGEM hole can be very high

Charge evacuation **Gain variation**

Luca Moleri - 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors CERN, 8th November 2023

*Jash, A., Moleri, L. and Bressler, S., 2023. Electrical discharges and their effect in a Resistive Plate WELL detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1045, p.167540.

Resistive layer of variable resistivity Cryogenic temperatures Courtesy of Ryan Felkai **Discharge current & light**

- RWELL with DLC resistive layer*
- Use light signal to disentangle piled up discharges
- Light signal and signal induced on anode are similar in shape and almost constant in values

Anode induced signal & light

Luca Moleri - 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors CERN, 8th November 2023

