

Study and Mitigation of Discharges in CMS Triple-GEM Detectors

Jeremie MERLIN on behalf of the CMS Muon group

3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors

November 2023

GEM upgrade projects for CMS:

- 3 detector projects in the forward muon endcap
- All based on same triple-GEM technology and same material
- GEM configuration 3(drift)/1/2/1 mm
- Baseline gas: Ar/CO₂ (70/30%)
- Max. background rates from a few kHz/cm² (GE2/1) to 150 kHz/cm² (ME0)
- \rightarrow About 600 m² of GEM foils for about 1.5 M of RO channels

CMS Quadrant

Jeremie MERLIN

Discharge Probability

Measuring the probability of discharges:

- Tests in laboratory (alpha particles) with both small and large detectors
- Tests in neutron facilities with CMSlike particle background

Discharge probability at G=3.5x10⁴ (HIP)

- 10x10@GDD Lab: 1.5x10⁻¹⁰
- GE1/1(KR)@904 GEM Lab: 1.7x10⁻⁸
- 10x10@CHARM: 2.85x10⁻⁹
- No temporary or permanent degradation of the detector performance could be measured after alpha irradiation, nor in neutron environment (up to 500 discharges/cm²)

2800 2900 3000 3100 3200 3300 3400 Divider Voltage (V) J. Merlin, CMS-TDR-016, 2017

I. Yoon, LHC KCMS Workshop, 09/01/2019

Divider current fu

- Special GEM foil design with single hole to control the conditions of discharges and isolate the elements that play a role
 - ightarrow 30 pF base capacitance
 - ightarrow Possibility to operate up to 800 V (stable)
- Discharges triggered with a Cd109 source
- Discharge identification made by cross-comparing PMT signals (light) and antenna signals (EM)

- Test results:
 - Measurements reveal high resistance to discharges, even at high energy (>10³)
 - Increase of the hole diameter after 10-20 accumulated discharges

Jeremie MERLIN

GE1/1 Slice test (2017-2018)

- First operational experience in the real CMS environment
- First observation of discharge propagation
- Experienced VFAT3 channel loss

Start of a new discharge R&D campaign to cope with discharge propagation (+ define new setups and protocols to reproduce the problem in the lab)

Propagation process:

Step1: the **primary discharge** develops inside the GEM holes (temporary short circuit)

Step2: a **precursor current** arises from the hot spot created by the primary discharge (thermionic emission enhanced by the Schottky effect)

Step 3: the precursor current grows from the energy available in the foil to become a streamer

ightarrow secondary discharge between the GEM and the RO

The probability to observe a discharge propagation in small detectors is **insignificant** below inductions fields of **7 kV/cm**: \rightarrow CMS GEM typical induction field = **4.1 - 4.5 kV/cm**

After a full propagation, the electronics is connected (via short circuits in the gas) to all the GEM electrodes

The probability to observe a discharge propagation in large detectors is significant even at low inductions fields

Discharge Propagation

Large reservoir of energy:

- The probability for a discharge to propagate depends on the gap capacitance
- A large gap capacitance means more energy to feed the precursor current and trigger the streamer development
- GE1/1 foils typically have enough energy stored in the gap to trigger the propagation, even at low induction field

Influence from outside:

- The energy stored "outside" the GEM foil can participate to the discharge propagation

CMS Preliminarv 10x10 cm² Triple-GEM Detector 3/1/2/1 mm Gap Configuration Gas = Ar/CO, (70/30%) Source = 241 Am (5.5 MeV α) HV Filter = 110 kΩ 0.7 GE1/1: 3-5 nF 0.6 Field Configuration: E_{Drift} = 2.63 kV/cm ΔV_{GEM1} = 392 V Etransfer1 = 3.06 kV/cm 0.3 Discharge ΔV_{GEM2} = 385 V Etransfer2 = 3.06 V/cm 0.2 ΔV_{GEM3} = 400 V Einduction = 8.00 kV/cm 0 10^{-2} 10^{-1} 10² Induction Capacitance [nF]

Jeremie MERLIN

Discharge Mitigations

Probabilit

Front-End protection:

- \rightarrow VFAT3 + custom plugin cards (HV3b)
- \rightarrow 3 variants developed for GE1/1
 - Baseline V2 (no external protection)
 - V3 with External 300-400 Ω
 - V4 with external diodes to GND
- \rightarrow Further optimization implemented for GE2/1 and later ME0 (new hybrid design)
- \rightarrow All variants thoroughly tested in laboratory + test beams

Early Conclusions (2019):

- \rightarrow working as expected in 10x10 detector with controlled discharge energy
- \rightarrow Different situation when operating with large detectors
 - Increased propagation energy •
 - Parasitic effects from the • other electronics components

HV3b V2

Initial baseline Internal input protection only (diode) Channels burnt with E>28uJ/disc

HV3b V4

Ext. input protection (diodes) OK after 540 ESD 470uJ/disc No increase of noise observed Rad Hard studies OK (10Mrad)

2

Hardware Configuration

HV3b V3 Ext. input protection

(R=330 Ω) OK after 500 ESD 470uJ/disc X-talk +15%; Noise +20% No radiation issues expected

In-depth investigations with large detectors:

- Additional studies indicated that the damage probability in large detectors is mainly due to propagation re-ignitions
- Re-ignitions are fed by the energy stored in the filter capacitance → can be mitigated by tuning the filter resistance → can reduce by a factor 5 the damage probability

Discharge Mitigations

Jeremie MERLIN

Mitigations Issues

However: some problems appeared when implementing the mitigations on full size detectors

Problem 1: the addition of the GEB increases the propagation probability by a factor ~5

Problem 2: the use of the de-coupling circuit on the VFAT plug-in card does **not** reduce the propagation probability as expected

Problem 3: the final prototypes of GE2/1 plug-in cards still suffered dead channels, not only during operation but also during the production process when performing HV curing of GEM3 (a.k.a Megger test)

In summary:

- → Increased propagation probability when connecting the final front-end electronics
- → No reduction of the propagation probability when using the new plug-in card
- ightarrow Increased susceptibility to discharges

Mitigations Issues

PROBLEM 1

Without on-detector electronics

			Calculated			
		area cm2	Capa nF	Measured Capa nF	Voltage V	Energy mJ
induction	GE1/1-L	4090	2.84	2.88	420	0.25
	10x10	115	0.08	0.08043859	420	0.01
foil	GE1/1	100	4.7	-	400	0.38
	10x10	115	5.47	5.6	400	0.44

With on-detector electronics

			Calculated	with electronics/cooling/chimney		
		area cm2	Capa nF	Measured Capa nF	Voltage V	Energy mJ
induction	GE1/1-L	4090	2.84	8.57	420	0.76
	10x10	115	0.08	3.2	420	0.28
foil	GE1/1	100	4.7	i=:	400	0.38
	10x10	115	5.47	5.6	400	0.44

GEB capacitance effects

- Past measurement indicated that GEB (GEM Electronics Board) and electronics can add parasitic capacitance to the induction gap
 - → With an increase of 5-6 nF the propagation probability can be multiplied by a large factor (based on 10x10 measurements)
 - Not possible to mitigate without a significant re-design of the electronics and PCBs

→ But not a real problem if the detector is in the mixed-design configuration

Mitigations Issues

PROBLEM 2 & 3

Drain resistor solution:

- Use of a drain resistor on the RO strips is a powerful mitigation solution
- Measured clear improvement with 10x10 detectors when connecting all RO strips to a single resistive output

Large scale mitigation

- Need to implement an AC-coupling circuit with 1nF capacitor (and drain resistor) at the input of the electronics
- Parallel use of 1500-3000 input circuits significantly increase the capacitance of the induction gap
- ightarrow Increased propagation probability
- ightarrow Increase propagation energy

\rightarrow Rollback to previous GE1/1 protection

Final Measurements

Discharge propagation probability: In total:

- More than 5000 discharges provoked on GEM3 with HIP
- → Propagation probability : 2.28x10⁻³ (at nominal gain 2x10⁴ in Ar/CO2)

VFAT Damage probability:

In total:

- > 120 confirmed propagations
- No channel damage observed
- → Damage probability upper limit: 2.4x10⁻²

(expecting same or better than 3.0x10⁻² from GE1/1)

Mitigations Overview

- the table only takes into account discharges caused by incoming BKG particles
- Spontaneous discharges may occur at the beginning of the detector life due to the presence of dust and contaminants after the chamber movement/installation
 - A" training procedure" is in place to eliminate the dust and clean the foils in safe conditions

ightarrow Discharges studies in the CMS GEM group

- Long experience \rightarrow almost continuous studies in place since 2015-2016
- Developed/improved/standardized setups for discharge investigations (with the help of CERN GDD and other RD51 groups)

\rightarrow Mitigation Strategy

Jeremie MERLIN

Jeremie MERLIN

Discharge Propagation

Propagation studies (2019-2021)

- Further studies to understand differences between small and large chambers:
 - No dependency with the GEM foil capacitance → no influence of the primary discharge energy
 - Clear increase of the propagation probability with the induction capacitance → i.e. sufficient amount of energy on the foil to feed the precursor current and trigger discharge propagation
 - All measurements indicate that the discharge propagation is more likely to happen in large foils due to the availability of energy directly stored in the foil

J. A. Merlin

Jeremie MERLIN

Crosstalk – General Description

Side effect of using double-segmented design on Start of a R&D campaign to GEM3: cope with the crosstalk issue Reducing the size of the HV segments on the last GEM increases the HF impedance to ground: Source Induces cross-talk \rightarrow **GEM HV Partition** All strips facing the **same HV partition** can suffer \rightarrow crosstalk Readout sector 0 Readout sector 8 Readout sector 16 \rightarrow In case of large signals (HIP), the corresponding Lateral view ______ crosstalk signals can trigger the electronics and make Source **GEM HV partition 1** the channels unusable for several BX **GEM HV partition 2** Readout strips Source signal Trigger rate Trigger rate **Frigger rate** Trigger rate eshold (DAC units Other HV GE1/1 triple-GEM GE1/1 triple-GEM GE1/1 triple-GEM GE1/1 triple-GEM Ar/CO2 (70/30%) Ar/CO2 (70/30%) Ar/CO2 (70/30%) Gain= 2x10 Gain= 2x10 partitions are eshold (DA ²⁴¹Am X-talk 41 Am 41 Am VFAT3 VFAT3 not affected 8 16 VFAT1 Position 0 Position 8 Position 16 15 Detector Strip Number Detector Strip Number Detector Strip Number GE1/1 VEAT Position Lavou

SLUDIILLY & AYINY

JEIEIIIE IVIERLIIV

Timing characteristics:

- Each primary signal structure has its own cross-talk structure coming after 10 BX (250 ns)
- Probability of cross-talk depends on the amplitude of the primary signal (expected)

Range and probability:

- Eventually, all channels sharing the same HV partition are affected by the cross-talk
- On average, 61% of the channels are seeing the same crosstalk signal for a given event

Crosstalk signals are typically affecting 61% of the channels sharing the same HV segment, with a delay of 250 ns with respect to the original signal

Crosstalk - Probability

Probability measurement:

- At fixed threshold to estimate the rate for the highest amplitude signals
- At nominal threshold
 (= 100Hz of noise)

ARMDAC $30 = 4.4 \pm 0.6$ fC (may vary a bit from one VFAT to another)

Crosstalk probability:

 $P_{XT}^{TH} = \Delta R_{neighbourg}^{TH} / \Delta R_{source}^{TH} \rightarrow \text{ at fixed threshold 100 DAC units}$ $P_{XT}^{Hz} = \Delta R_{neighbourg}^{Hz} / \Delta R_{source}^{Hz} \rightarrow \text{ at nominal threshold 100 Hz noise}$

Crosstalk probability in double-segmented foils becomes problematic for energy deposits above **30 keV**. X-rays and lower ionization particles **do not trigger** crosstalk

Saturation

200 DAC units

 \rightarrow Not possible to **quantify**

the max amplitude of a signal

 \rightarrow A "plateau like" rate profile

indicates that the signal is

above the VFAT range

if the SBIT rate drops around

Crosstalk Mitigation in Other Experin

LHCb Experience:

- Triple-GEM ~ 480 cm²
- 3/1/2/1 configuration
- HV segments top ~ 80 cm²
- HV segments bottom ~ none
- Induction Capa ~ 0.2 nF

KLOE-2 Experience:

- Triple-GEM ~ 2450 cm² (cylindrical)
- 3/2/2/2 configuration
- HV segments top~ 105 cm²
- HV segments bottom ~ 615 cm²
- Induction Capa ~ 0.8 nF

Crosstalk mitigation:

Use of a **blocking capacitor** between G3 bottom and GND to bypass the induction gap: LHCb: C_b = 0.7 nF KLOE-2: C_b = 2.2 nF A. Cardini for the LHCb Collaboration (2006)

 $\underline{https://indico.cern.ch/event/473/contributions/1983755/attachments/954021/1353774/Cardini.pdf}$

G. Morello for the KLOE-2 IT group(2013) https://https://indico.cern.ch/event/258852/contributions/1589820/attachments/456014/632021/MPGD2013_morello.pdf

Technical limitations:

- GE2/1: 40 to 80 HV segments per foil ightarrow the blocking circuit must be inside the gas volume
- Significant re-design of the foils (add space for the RC components, bring GND line on the foil)
- Significant re-design of other detector components (DRIFT board, Mechanics etc ...), possible reduction of the active area
- Introduce new weaknesses (e.g. long term failure of the capacitor)
- Hard to find nF capacitors which can fit in a 1mm gap (including safe distance with other electrodes)

Conceptual limitations:

- Adding the blocking capacitor means increasing the gap capacitance by a factor 3:
 - → Increase of the discharge propagation probability (defeats the primary purpose of the double-segmented design)
 - → Increase of the discharge energy, i.e. the probability to damage the electronics in case of propagation

	Induction C _i (nF)	Blocking C _b (nF)
LHCb	~ 0.2 nF	0.7
KLOE-2	~ 0.8 nF	2.2
GE2/1	~ 2 - 3 nF	> 6 – 9 nF

3 configurations are compared:

- GE11 double segmented; segment size ~ **100 cm²**
- GE11 with merged segments; segment size ~ 1000 cm²
- GE21 single segmented; "segment" size ~ 2500 cm²

Improvements:

- Increasing the HV segments size helps to evacuate the crosstalk current and "dilute" the crosstalk effect over a larger surface
- Maximum segment size: ~ 1200 cm² (i.e. 2 segments per foil)
 - \rightarrow Crosstalk probability reduced by a factor ~ 2.5
 - \rightarrow Crosstalk amplitude reduced to less than ~ 20-25 fC

But the improvement is much less compared to a regular single segmented foil:

- Unnecessary complication of the design
- Both options would give poor discharge mitigation

The improvement of the crosstalk is **not sufficient** to justify the increasing of the HV segment size

- \rightarrow better results are obtained by completely removing the bottom segmentation
- ightarrow The real choice is between single-segmented or double-segmented with fine segments

GE21 Final Design Validation

Simulation parameters:

- Event samples for Z ightarrow Mumu @ 14 TeV
- The HIP rate is estimated from the BKG simulation, convoluted with the crosstalk probability vs.
 deposited energy (> 83 keV).
- Each strip can possibly see the crosstalk from **the** entire module
- Inoperative time of 20 BX based on the electronics simulation

First order approximation given by:

Probability of inactive RO per event : $P_{DT} = \frac{HIP_{rate}}{BX} \times Prob_{XT} \times InoperativeTime$

Then the real chamber efficiency is : $Eff_{real} = Eff_{ideal} \times (1 - P_{DT})$

The maximum **efficiency drop** due to the crosstalk effect is of the order of **0.04 %** at the highest eta (without safety factor)

→ Successful mitigation

Crosstalk – Rate Estimations

Evaluation of the Crosstalk rate in CMS:

- Prediction of the total particle rate per eta partition of a single GE2/1 chamber
- Simulation including neutron background hits has been performed with GEANT
 - Total hit rate of Highly Ionizing Particles (HIPs) (mostly protons and nuclei) depositing 30 keV or more
- The HIP rate can be convoluted with the energy-deposit dependent probability to create a cross talk signal to obtain the prediction of the cross talk signal rate

BKG population susceptible to **trigger crosstalk** is derived from the 30 keV energy cut: up to **10.4 Hz/cm²** in the hottest GE21 region. The average energy deposit for this population is **107 keV**

GEANT4 based simulation model including the latest CMS configuration (with all subdetectors upgrades) CMSSW 11_0_0_pre13 Min Bias collisions with hit time 100ms