



Hajime Nishiguchi, KEK, and <u>Malte Hildebrandt</u>, PSI on behalf of the MEG Collaboration

# HV stability and aging phenomena observed in the drift chamber system of the MEG experiment

3<sup>rd</sup> International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors CERN, 07.11.2023



# Charged Lepton Flavour Violation

- charged lepton flavour violating (cLFV) decay  $\mu^{+} \rightarrow e^{+} \gamma$  not yet observed
- Standard Model (SM): forbidden decay
- Standard Model with v masses and oscillations: strongly supressed due to small v masses



BR (
$$\mu^+ \rightarrow e^+ \gamma$$
)  $\approx 10^{-54}$ 

Beyond Standard Model (BSM) theories: enhanced probability due to mixing of new particles



 $\rightarrow$  experimental observation of  $\mu^{t} \rightarrow e^{+} \gamma$  is clear signature of "New Physics" beyond the SM



#### **MEG Experiment**

- search for cLFV decay  $\mu \rightarrow e + \gamma$
- located at CHRISP facility @ Paul Scherrer Institut (PSI)
  - □ p-cyclotron: 590 MeV, 2.4 mA (→1.4 MW)
  - $\pi$ E5: most intense DC low momentum (28 MeV/c) muon beam in the world: intensity *O*(10<sup>8</sup> μ/s)
- dedicated detector design to measure the observables characterising the  $\mu^{+} \rightarrow e^{+} \gamma$  event:  $E_{\gamma}$ ,  $E_{e}$ ,  $t_{e\gamma}$ ,  $\vartheta_{e\gamma}$ ,  $\varphi_{e\gamma}$ Adam *et al.*, EPJ C 73(4) 2365 (2013)











#### **MEG Experiment**

- search for cLFV decay  $\mu \rightarrow e + \gamma$
- located at CHRISP facility @ Paul Scherrer Institut (PSI)
  - □ p-cyclotron: 590 MeV, 2.4 mA (→1.4 MW)
  - <sup>α</sup>  $\pi$ E5: most intense DC low momentum (28 MeV/c) muon beam in the world: intensity  $O(10^8 \,\mu/s)$
- dedicated detector design to measure the observables characterising the  $\mu^{+} \rightarrow e^{+} \gamma$  event:  $E_{\gamma}$ ,  $E_{e}$ ,  $t_{e\gamma}$ ,  $\vartheta_{e\gamma}$ ,  $\phi_{e\gamma}$ Adam *et al.*, EPJ C 73(4) 2365 (2013)
- MEG: analysis of full data sample 2009-2013 BR  $(\mu^+ \rightarrow e^+ \gamma) < 4.2 \cdot 10^{-13}$  (90% CL) Baldini *et al.*, EPJ C 76((), 434 (2016)
- MEG II: • analysis of data sample 2021 & MEG BR  $(\mu^{+} \rightarrow e^{+} \gamma) < 3.1 \cdot 10^{-13}$  (90% CL) arXiv:2310.12614 [hep-ex]

<sup>o</sup> goal: final sensitivity 10<sup>-14</sup> level







### Drift Chamber System @ MEG

- designed to measure 52.8 MeV e<sup>+</sup> (achieved  $\sigma_{E} \approx 330 \text{ keV}$ )
  - I6 individual drift chamber modules
  - <sup>a</sup> aligned radially in half circle, 10.5° intervals
  - Iow multiple scattering contribution
    - 2.6·10<sup>-4</sup>  $X_0$  per module
    - 2.0·10<sup>-3</sup>  $X_0$  along e<sup>+</sup> track
  - $^{\circ}$  filling gas He/C<sub>2</sub>H<sub>6</sub> (50/50)
  - operated in Helium atmosphere
  - operated in B-field, 0.5 1.26 T
- mechanics
  - Im long, V-shaped / open trapezoidal geometry
  - carbon fibre frames
  - two (staggered) detector planes per module to resolve ambiguities
  - carbon fibre support structure (DC modules, HV/LV cables, gas tubes, etc.)



Hildebrandt, NIM A623, 111 (2010) Adam *et al.*, EPJ C 73(4) 2365 (2013)



# Drift Chamber System @ MEG

- wiring
  - $^{\rm o}$  25  $\mu m$  Ni80/Cr20 wires (2.2 kΩ/m)
  - $^{\rm o}$  50  $\mu m$  Cu98/Be2 wires
- soldering
  - low-temperature tin (w/o rosin)
    common flux
- cathode
  - ${}^{\rm \tiny D}$  12.5  $\mu m$  polyamide foil
  - ${\scriptstyle \circ}$  ~250 nm sputtered aluminium coating
  - Vernier pattern ( $\lambda$  = 5 cm, 47.5  $\Omega$ /m)
  - wet etching process
- gluing and sealing
  - <sup>D</sup> Araldite AY 103-1, HY 991
  - ThreeBond 1533D (Silyl-based polymer)

Hildebrandt, NIM A623, 111 (2010) Adam *et al.*, EPJ C 73(4) 2365 (2013)







# Filling Gas and Operation Parameters

- filling gas
  - <sup>•</sup> He/C<sub>2</sub>H<sub>6</sub> (50/50)
  - $^{\rm o}$  high, saturated v\_d ~4 cm/µs, small  $\alpha_{\rm Lorentz}$  < 8°
  - $^{\rm o}$  He:  $X_0/\rho$  = 64 000 cm, but: low breakdown voltage
  - <sup>a</sup> C<sub>2</sub>H<sub>6</sub>: good quenching properties, but: risk of polymerisation
- gas system
  - stainless steel, Swagelok fittings, polyurethane
- electron amplification
  - □ E ≈ 5.2 kV/cm ≈ 20 Td
  - $^{\rm o}$  electron amplification:  ${\rm ^{\sim}5{\cdot}10^{5}}$
- particle rate
  up to 30 kHz/cm
- accumulated charge
  up to 1 C/cm/8months

Hildebrandt, NIM A623, 111 (2010) Adam *et al.*, EPJ C 73(4) 2365 (2013)







Hildebrandt



#### Drift Chamber System @ MEG

- operation
  - <sup>a</sup> initial problems (2007/08) with HV stability due to
    - sealing of HV connections in outer Helium atmosphere and
    - «helium pocket»
  - anode and cathode aging phenomena
- performance (resolution σ)
  - energy ~330 keV (@52.8 MeV)
  - $\,^{\rm o}$  angular  $\,$  ~8.5 mrad in  $\theta$  , ~7.7 mrad in  $\phi$







- degradation of drift chamber performance
  - occurred within first weeks of operation
  - In frequent HV trips
  - operation voltage continuously decreasing
  - <sup>a</sup> individual timescale for different dc modules
- "helium pocket"
  - gas volume enclosed by HV and GND
  - <sup>a</sup> He from filling gas penetrated in this gas volume
  - increasing He concentration led to decreasing breakdown voltage







- individual timescales of performance degradation
  - within few weeks
  - $\rightarrow$  depending on thickness of glue that • within few months needs to be penetrated by Helium
  - never



gas permeability much higher  $\rightarrow$  (He)/ C<sub>2</sub>H<sub>6</sub>











- confirmation of hypothesis
  - <sup>a</sup> drift chamber module without outer cathode hood
  - $^{\rm o}$  operated in He and He/C  $_{\rm 2}H_{\rm 6}$  atmosphere
  - <sup>a</sup> after 65 days of operation: observation of discharge
- solution
  - new layout of wire pcb
  - no HV traces on bottom layer
  - Individual layers for HV and GND
  - " "tapped blind vias" to connect only appropriate layers

- newly build drift chamber modules worked in long-term operation
  - $\rightarrow$  occurrence of long-term aging phenomena







- Ni/Cr (80/20) 25μm
- data sheet

| □ Ni | balance   |
|------|-----------|
| □ Cr | 18 - 20 % |
| □ Si | 1.5 %     |
| □ Al | 1000 ppm  |
| □ Fe | 2000 ppm  |
| □ Mn | 2000 ppm  |

 scanning electron microscope (SEM) (S. Ritter, PSI)







10um

- Ni/Cr (80/20) 25μm
- data sheet

| □ Ni | balance   |
|------|-----------|
| □ Cr | 18 - 20 % |
| □ Si | 1.5 %     |
| □ Al | 1000 ppm  |
| □ Fe | 2000 ppm  |
| □ Mn | 2000 ppm  |

 scanning electron microscope (SEM) (S. Ritter, PSI)





- Ni/Cr (80/20) 25μm
- data sheet

| □ Ni | balance   |
|------|-----------|
| □ Cr | 18 - 20 % |
| □ Si | 1.5 %     |
| □ Al | 1000 ppm  |
| □ Fe | 2000 ppm  |
| □ Mn | 2000 ppm  |

- scanning electron microscope (SEM) (S. Ritter, PSI)
- energy-dispersed x-ray spectroscopy (EDX) (S. Ritter, PSI)



EHT = 20.00 kV Mag = 2.60 K X Date :8 Jul 2009

Detector = SE1 WD = 28 mm File Name = draht-01.tif





- Ni/Cr (80/20) 25μm
- data sheet

| □ Ni | balance   |
|------|-----------|
| □ Cr | 18 - 20 % |
| □ Si | 1.5 %     |
| □ Al | 1000 ppm  |
| □ Fe | 2000 ppm  |
| □ Mn | 2000 ppm  |

- scanning electron microscope (SEM) (S. Ritter, PSI)
- energy-dispersed x-ray spectroscopy (EDX) (S. Ritter, PSI)







- aluminium peeling off
  - effected region with sharp edges
  - not symmetric to anode wire, shifted due to 'rotation' of E-field in E×B configuration?
  - feedback manufacturer: maybe due to missing chromium underlayer











- white "shadow"
  - intensity decreasing with increasing r
  - not continuous in r,
  - but separated stripes
  - not symmetric to anode wire
  - with magnification: "particles" perfectly aligned in lines
  - assumption: scratches seed for material coming up to the surface





FOLIE1 IMP

PARTIK2.M



FOLIES IM foil "spots", "peaks" Al • effected region with sharp edges Isightly extended at etched gaps Mg not symmetric to anode wire Ο A. F. 37 Street Kon M. Y • with magnification: "bubbles"(?) • precursor for peeling off? EHT = 10.00 kV Mag = 423 X Date :8 Jul 2009 Detector = SE1 WD = 30 mm File Name = folie-04.tif **RALL SCHERRER INSTIT** FOLES M Al «spot» Mg റ topography contrast

Epergy (ke)



- remaining current
  - current starts only during high-rate irradiation (not a surface current)
  - remaining current stays, even external irradiation finished
  - $^{\rm o}$  only when HV is reduced to 1300 V ( $\alpha_{\rm Townsend}$  = 0) remaining current dies away
- Malter effect ("thin film field emission")
  - <sup>D</sup> Louis Malter, Phys.Rev. 50 (1936) 48-58







- remaining current
  - current starts only during high-rate irradiation (not a surface current)
  - remaining current stays, even external irradiation finished

 $\rightarrow$  improved cleaning procedure by

of newly build dc modules

- only when HV is reduced to 1300 V ( $\alpha_{Townsend} = 0$ ) remaining current dies away
- Malter effect ("thin film field emission")
  - <sup>D</sup> Louis Malter, Phys.Rev. 50 (1936) 48-58
- potential insulating thin film on cathode
  - remaining photoresist
  - traces of glue
  - fingerprints
  - avalanche-produces polymers from filling gas  $(C_2H_6)$
  - gas pollutants
  - insulating deposits left from sparks







# Wir schaffen Wissen – heute für morgen

#### Summary

- The drift chamber system of the MEG experiment faced quite some challenges: He, C<sub>2</sub>H<sub>6</sub>, aluminium, high gain, high rate
- Initial HV instabilities due to "helium pocket" fixed with new design of wire pcb.
- Long-term operation showed 'classical' and 'textbook-like' anode wire and cathode aging.

