Nanodiamond photocathodes for MPGD-based single photon detectors

Richa Rai ICTP-INFN Trieste

On Behalf of Trieste, Bari, & CERN collaboration

Introduction

- Hydrogenation and coating
- Pervious studies on HND
- Transmittance of HND
- Photoemission measurement
- Summary

Why and which Nano Diamond

in the framework R&D programme, coupling of H-ND and THGEMs are investigated

ND R&D Scheme

Hydrogenation and Photocathode coating at INFN Bari

• ND coating by pulsed spray technique

Hydrogenation of ND: MWPECVD setup @ INFN Bari

Hydrogenation & Coating of ND: @ INFN Bari

NDs solutions & their coating

Photoemission measurements

Photoemission setup and gas mixing unit

OLD ND, HND [D&T]- 2019

New HND [D&T, E6, and BDD]- 2021

*Photocurrent values : H-ND Old/H-ND new factor ~3 for Vacuum @160 nm

3rd Conference on Detector Stability and Aging Phenomena in

Schematic & Pictorial view of photoemission measurement setup: ASSET @ RD51 CERN

Aging study with X-Ray irradiation of HND PC @ RD51 CERN

- □ This is the first preliminary irradiation ageing study of HND photocathodes ever performed.
- HND photocathodes are quite robust compared to CsI to X-ray Irradiation
- □ CsI PDE lowered down by factor ~5 at 1 mC/cm² of charge accumulation

3rd Conference on Detector Stability and Aging Phenomena in

Wavelength Scan: @ 90 V [~0.2 kV/cm]

Photocurrent measurement in vacuum and in gas

4.00E-09

3.50E-09

Gaseous Detectors : Richa

2300

215

Wavelength scan : I NIST 2017

E Field Scan : $\partial \lambda = 162 \text{ nm}$ H-ND D&T

- Gap between substrate and electric wire is 4.4 mm.
- Wavelength is fixed at 162 nm for E filed scan
- Wavelength scan and E Field scan performed with MgF2 window in vacuum as well as in Ar:CH4 gas mixtures

Substrate holder for photo current measurement

3rd Conference on Detector Stability and Aging Phenomena in

Surface morphology analysis of NDs by Scanning /Transmission electron microscopy

@ IOM CNR Elletra – Trieste Italy

3rd Conference on Detector Stability and Aging Phenomena in Gaseous Detectors : Richa

SEM/STEM setup @ IOM-CNR, Elletra

STEM images of 10 shots of ND and HND powders coated on TEM grid.

3rd Conference on Detector Stability and Aging Phenomena in

THGEM with Nanodiamond Photocathode

- THGEMs are standard Printed Circuit Boards (PCBs) with holes produced by mechanical drilling.
- Like in GEMs, in the presence of a correct electrical bias and in a proper gas mixture, each hole acts as an electron multiplier.
- The signal generated by the gas multiplication is collected at the anode.
- The geometrical parameters of our THGEMs are: hole diameter (d) = 0.4 mm; hole pitch (p) = 0.8 mm; thickness of the fiberglass (t) = 0.4 mm; and rim around holes < 5 um.

- For measurements the gas mixture used is: Ar: CO₂, 70:30
- CAEN N1471H HV PS has been used.
- CREMAT CR-110 Preamplifier with CREMAT CR-150 r5 evaluation board has been used to read the signal from the detector.
- Ortec 672 Spectroscopy amplifier with AMPTEK MCA 8000A has been used for processing the signal and for saving the data.

08/11/23

The response of THGEMs as electron multipliers is unaffected by HND coating

3rd Conference on Detector Stability and Aging Phenomena in

HND based prototype of photon detector

Transmittance of HND coated on MgF₂ and MgF₂-Cr

Transmittance of HND

(a) Transmittance of bare and 10 shots HND coated MgF₂ and it is found to be about 40% for HND MgF₂.

(a) Transmittance of uncoated and HND coated Cr-MgF₂ window and similar as HND coated on MgF₂.

3rd Conference on Detector Stability and Aging Phenomena in Gaseous Detectors : Richa

26

Quantum Efficiency of HND

Quantum Efficiency of HND has been determined by using following relation

 $QE_{HND} = \frac{I_{HND}}{I_{NIST}} QE_{NIST}$

NIST Photodiode

MWPC

3rd Conference on Detector Stability and Aging Phenomena in

QE of HND in semitransparent mode

By coating HND on Cr-MgF₂

Sample Holder

QE value increases for 10 shot is about ~0.4% at 140 nm wavelength.

3rd Conference on Detector Stability and Aging Phenomena in Gaseous Detectors : Richa

Summary

High robustness against moisture, light irradiation, ion bombardment.

H-ND has been applied on THGEMs and a R&D towards a detector of single photon based on hybrid (THGEM + MM) MPGD technology with H-ND photocathode has been started.

Photoemission measurements are performed in a vacuum as in different gas mixtures.

Transmission and QE of HND in semitransparent mode have been measured.

A systematic study of gas, HV configuration, and detector geometry has been done.

□ Initial study suggests that; Hydrogenated Nano Diamond can be a potential candidate for future MPGD technology.

