

FINE WINE ...

p. 1

Gaseous

Detector

Comparative Aging Studies of GEM Detectors in contaminated Environments I'M AGING LIKE

Jeremie MERLIN on behalf of the CMS Muon group

D. Fiorina* (INFN-Pavia), F. Fallavollita** (CERN)

3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors

November 2023

Aging pre-testing in 2013-2014:

- Large triple-GEM prototype
- Ar-CO2 (70-30)
- 2 wire chambers for gas purity monitoring (upstream and downstream) with low rate X-ray sources
- ¹³⁷Cs (662 keV photons)
- Short test period (7 months)

Evidence of gas contamination:

- Both input and output wire chambers show clear signs of aging after just a few days of irradiation
- Presence of Silicon deposits in the irradiated regions

→ Confirmation that the gas was contaminated even though the GEM detector did not show signs of performance degradation

\rightarrow No signs of aging in the GEM prototype up to 12 mC/cm²

Jeremie MERLIN

Suspicious observations:

- Once the pre-test was done, the final aging test was started after in-depth cleaning of the entire gas tubing, removal of suspicious T sensors in the gas line, and using a later generation of GEM detectors
- The pre-test GEM chamber was opened for inspection:
 - Presence of unidentified "white dots" in the irradiated region, typically involving 1-2 holes
 - SEM+EDS (Energy Dispersive Spectroscopy) revealed the presence of silicon deposits
 - Rest of the foil is in perfect state

Motivations

Preliminary hypothesis:

- Even in the presence of pollutants in the gas, GEM foils did not suffer polymerization in normal conditions of operation (up to the accumulated charge of this test)
- But polymerization occurred in specific holes subject to discharges:
 - Increased energy involved in the discharge process triggered gas fragmentation and re-combination

→ New tests will be conducted in 2023/2024 to confirm this hypothesis (using simplified single-hole GEM foils)

Motivations for new studies:

- If the energy at play during in the electron avalanche is a driving factor, the aging rate might then depend on the charge density inside GEM holes
- What is the influence of the primary charge (i.e. particle/interaction type) on the aging rate ?
 - → Proposal to conduct comparative studies with low energy photons vs. Heavy Ionizing Particles (HIP)
 - \rightarrow Use of heavily contaminated gas to facilitate the observation of aging

Special aging test setup:

- Standalone setup at CERN previously used for outgassing studies
- 4 identical test lines with: individual gas flow control, outgassing box, monitoring wire chamber
- Common "old style" DAQ chain with NIM (trigger) +VME (ADC)
- Meteo station for T/P monitoring and recording

Outgassing/Aging test setup at CERN (CMS GEM Lab)

Triple-GEM:

- 3/1/2/1mm configuration
- Ar-CO2 (70-30%) @ 5L/hr
- Alpha sector (special opening)
 - ²⁴¹Am: α rate = 600 Hz
 - Primary charge ~ 12k pairs
- X-ray sector
 - ⁵⁵Fe: γ rate = 900 Hz
 - Primary charge ~ 200 pairs

SWPC: (Single Wire Proportional Counter)

- Gold-plated Tungsten wire (diam. 50 μm)
- Ar-CO2 (70-30%) @ 5L/hr
- X-ray irradiation
 - ⁵⁵Fe: γ rate = 700 Hz
 - Primary charge ~ 200 pairs

SWPC

Outgassing box:

- Use of the outgassing test setup to have any material upstream the detectors under test
- Outgassing box filled with: 10g of 3140 RTV Dow Corning + 10 g of Acrifix 1R 0192 (PCV glue)
- Expected contaminants:

Methyl Methacrylate

Methyl Trimethoxysilane

- <image><section-header><image>
- Heating tape wrapped around the outgassing box to heat up the sample and enhance the outgassing

Measurement of effective gain variations:

- ADC spectra recorded every 30 min during the long run for both SWPC and the various GEM regions
- Off-line analysis to identify ADC values for: baseline, escape peak and photo peak
- Test duration depends on the source rate and the primary charge (to reach the same accumulated value)
- Polluting material was heated up to 50C during the second half of the irradiation period
- → Total accumulated charge equ. to 170mC/cm², i.e. > 70 days of continuous irradiation

Jeremie MERLIN

Data Analysis Overview

Correlation with the environment:

- Usual influence of T and P on the detector gain
- Environment fluctuations are recorded every 5 min during the entire irradiation test
- Data are combine with detector output to make comprehensive events

Analysis workflow:

- Identify the correlation between T/P/Gain
- Apply T/P correction
- Normalize to initial gain values

Initial Observations:

- All detector (all regions) accumulated the equivalent of 170 mC/cm² (over a period of 70-90 days)
- Permanent gain drop in the wire chamber
- No change of effective gain in the two GEM regions

Initial Observations:

- Clear evidence of gain drop after about 50 days of operation
- Not recovered after flushing gas without HV + neighbor (not irradiation regions) show normal gain values
- SEM confirms the presence of 5-10 μm deposits in the irradiated region
- EDS confirms the presence of Silicon at the level of the deposits
- → Clear confirmation of aging phenomenon triggered by the upstream outgassing material

EDS Analysis:

%	Au	С	0	Si	Na	+ traces		State of the local division of the local div
Spectrum 3	7.9	67.8	17.7	2.8	1.5	АІ, Мg, K, CI, S, F, Ca	-spectrum 3	
Spectrum 4	9.6	13.2	26.4	27.3	2.2	Al, Mg, K, Cl, S, F, Ca	Spectrum 6 Spectrum 4 Spectrum 5	
Spectrum 5	62.4	14.2	10.7	8.3	1.6	АІ, Mg, K, Cl, S, F, Ca		
Spectrum 6	78.1	4.0	13.0	4.2	0.2	Al, Mg, K, Cl, S, F, Ca		20.pm IProbe= 1.2.nA WD = 6.4 mm Detector - 5151 8 Oct 2018 HT - 10.90 kV Mag = 1.00 KX 11:90:95

Jeremie MERLIN

Analysis Plan:

Visual Inspection

- Reference samples and X-ray samples appear clear and shiny
- Alpha samples show a dark stain with the same shape as the irradiation window

SEM imaging of the surfaces with focus on the GEM rim
 Linear EDS analysis

Top Side (DRIFT)

- 25 EDS measurements done along a data line of 75 μm from inter-hole region to hole rim
- Composition of the different elements at the level of %

Bottom Side (ReadOut)

- In both cases: clean surface with > 97% copper
- Polyimide region clearly identified along the data line due to the clear increase of C and O compounds
- No other elements

Top Side (DRIFT)

- Presence of slight Silicon deposits (4%) at the very edge of the GEM holes
- The rest of the foil is as clean as the reference sample

Bottom Side (RO)

Clean foil with no traces of Silicon deposits, even at the hole rim

Stability & Aging

90

Top Side (DRIFT)

- Presence of slight Silicon deposits on the entire surface (>10%)
- Clear increase of Silicon composition at the rim up to 40%, forming a ring of deposits around the holes

Bottom Side (RO)

- Lower Silicon content than on the top, but a slight amount on the entire surface (1-3%)
- Clear increase of Silicon composition at the rim, up to 25 %

Edge Analysis:

- Silicon deposits grow from the GEM rims and spread over the entire foil surface
- Larger effect on top side
- Beginning of depositing process with X-rays
- Clearly establish deposits with Alphas

- Several aging tests were performed in parallel (within the same gas volume)
 - Comparison between X-ray irradiation and HIP (alphas)
 - Heavily contaminated Ar/CO2 gas with outgassing silicon glues (not realistic but helps to speed up the aging process)
 - Both tests performed at similar particle rate (600 to 900 Hz) to reach the same accumulated charge 170 mC/cm²
- Clear difference in the aging rate between the two sources
 - Beginning of silicon deposits on the top side of the X-ray sector
 - Well established silicon deposits on both sides of the Alpha sector
 → Clear evidence of the influence of the ionization power on the detector longevity

Next steps/open questions:

- \rightarrow Impact on how we design aging studies for future applications ?
- → How to ensure realistic representation of the background in the target applications when designing aging tests?
- \rightarrow What facilities can be used for long-term HIP irradiation with full size (large) detectors ?

Jeremie MERLIN

Jeremie MERLIN

Basic structure similar to GE1/1 and GE2/1

GE2/1

CMS GEM Detectors (from prototypes to final designs)

Self-stretching mechanism

Strong experience with triple-GEM detector construction

- Assembly and QC procedures developed during the R&D phase and optimized for the various GEM projects
- Expertise and documentation in place for many years
- Continuous R&D within the GEM group to increase the understanding of the detector operation/longevity and tackle new issues (and train new generations of detector experts)

MEO