

Study of gas aging impact on detector performance: development of a new gas circulation system for ACTAR-TPC at GANIL

K. Rojeeta Devi, C. Nicolle, J. Pancin, T. Roger

Grand Accélérateur National d'Ions Lourds (GANIL) CEA/DRF-CNRS/IN2P3, B.P. 55027, Caen, Cedex, France

3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors

Outline

3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors

1. GANIL cyclotrons: Stable and unstable beam < 1 MeV/A upto 95 MeV/A Nuclear structures and reaction studies

- 2. NFS: Neutron beam (upto 30 MeV) Neutron induced fission, neutron therapy, industrial study
- 3. S³: Stable beam from SC LINAC

Low cross-section experiments Super-Heavy Elements (SHE) synthesis, Z>104 Spectroscopy of neutron deficient nuclei

4. DESIR: Low-energy beam

Structure of exotic nuclei Fundamental interactions Astrophysics 232 permanent staff(researchers, engineers, tech.)55 temporary staff(Tech., PhD, postdocs)

Researchers : 59 Administration : 28 Accele. & Instru. : 200

1. GANIL cyclotrons: Stable and unstable beam < 1 MeV/A upto 95 MeV/A Nuclear structures and reaction studies CTAR-TP 2. NFS: Neutron beam (upto 30 MeV) Neutron induced fission, neutron therapy, industrial study 3. S³: Stable beam from SC LINAC Low cross-section experiments Super-Heavy Elements (SHE) synthesis, Z>104 Spectroscopy of neutron deficient/nuclei 4. DESIR: Low-energy beam Structure of exotic nuclei **Fundamental** interactions Astrophysics

3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors

- Active target detector : gaseous detector
 atoms of the gas serve as target
 study with low intensity beams (RIB/10⁴ pps)
- ACTAR-TPC at GANIL → cubic reaction chamber gestimate segmented collection plane (128x128 pads)
 ⇒ uniform drift electric field (2-layers wire field cage)
 ⇒ signal amplification with micromegas
 ⇒ signal registration by GET electronic

Fig: ACTAR-TPC. (Figure ref: B. Mauss et. Al, Nuclear Inst. and Meths. in Phys. Res., A 940 (2019) 498–504)

- Active target detector : gaseous detector
 atoms of the gas serve as target
 study with low intensity beams (RIB/10⁴ pps)
- ACTAR-TPC at GANIL → cubic reaction chamber
 ⇒ segmented collection plane (128x128 pads)
 ⇒ uniform drift electric field (2-layers wire field cage)
 ⇒ signal amplification with micromegas
 ⇒ signal registration by GET electronic

• 3-D mapping of the decay or reaction products

- ➡ exploration of nuclei near the drip lines
- ➡ decay studies, resonant scattering, etc

Fig: Method of detection

- Active target detector : gaseous detector
 atoms of the gas serve as target
 study with low intensity beams (RIB/10⁴ pps)
- ACTAR-TPC at GANIL → cubic reaction chamber
 ⇒ segmented collection plane (128x128 pads)
 ⇒ uniform drift electric field (2-layers wire field cage)
 ⇒ signal amplification with micromegas
 ⇒ signal registration by GET electronic
- 3-D mapping of the decay or reaction products
 - exploration of nuclei near the drip lines
 decay studies, resonant scattering, etc

Constructed α-tracks from the fragmentation of C and O.

- ACTAR-TPC : gas is circulated and renewed to prevent unwanted impurities
 due to outgassing and leakage in the system.
 - → because of the continuous irradiation and the electron avalanche.
- The impurities can compensate the detector's performances like deterioration in the gain factor or resolution.
- → gas purity is a key factor in ensuring optimum detector's performance.

- ACTAR-TPC : gas is circulated and renewed to prevent unwanted impurities
 due to outgassing and leakage in the system.
 - → because of the continuous irradiation and the electron avalanche.
- The impurities can compensate the detector's performances like deterioration in the gain factor or resolution.

→ gas purity is a key factor in ensuring optimum detector's performance.

- Certain nuclear physics experiments require expensive gases, deuterium (²H), helium-3 (³He), xenon (Xe), etc.
 recycling of gas becomes significantly important
- Another significant concern is the use of green house gases (GHG) like CF_4 , C_3F_8 , etc in certain experiments.
- Gas recycling :
- → can reduce the operational costs and it will enable the use of expensive gases.
- → can manage the GHG emissions as well.

- ACTAR-TPC : gas is circulated and renewed to prevent unwanted impurities
 due to outgassing and leakage in the system.
- because of the continuous irradiation and the electron avalanche.
- The impurities can compensate the detector's performances like deterioration in the gain factor or resolution.
- ⇒ gas purity is a key factor in ensuring optimum detector's performance.
- Certain nuclear physics experiments require expensive gases, deuterium (²H), helium-3 (³He), xenon (Xe), etc.
- → recycling of gas becomes significantly important
- Another significant concern is the use of green house gases (GHG) like CF_4 , C_3F_8 , etc in certain experiments.
- Gas recycling :
 - → can reduce the operational costs and it will enable the use of expensive gas.
- → can manage the GHG emissions as well.
- Aim : Development of an advanced gas regulation system for ACTAR-TPC.
 - ➡ Investigate the effect of gas aging on detector performance and characterization of gas filters was carried out to ensure their suitability for adoption in gas recycling.

➡ In circulation mode, the system can be operated in three different routes

- **Circulation in opened loop :** Exiting gas is either release in the atmosphere or collected to a gas bottle.
- without filter
- **Circulation in closed loop** : Exiting gas is sent back to the chamber without prior cleaning.
- with filter
- **Circulation in closed loop** : Exiting gas is sent back to the chamber after cleaning by passing through a gas filter unit.

- Electrons move towards the anode wires where it creates an electron avalanche.
- Induce charge signals to the anode pads which are read through Gassiplex chips
- The Gassiplex chips generate multiplexed signals which are read by Numexo2.

- Energy loss profile of the α particles will give Bragg curves.
- Energy distribution, its resolution and stopping point (last pad) of the α particles in different conditions are analyzed.

- Electrons move towards the anode wires where it creates an electron avalanche.
- Induce charge signals to the anode pads which are read through Gassiplex chips
- The Gassiplex chips generate multiplexed signals which are read by Numexo2.

- Mean energy :
 - Oscillation and it follows day and night time of the run period.
 - Overall decrease with progressing run time.

- Last pad (stopping point) :
 - No significant change in static mode.
 - ➢Oscillation in circulation mode.
- Energy resolution :
 - ➢ No considerable change in both modes.

- Mean energy :
 - Oscillation and it follows day and night time of the run period.
 due to temperature variation.
 - ➢Overall decrease with progressing run time.
 - due to the degradation in gas quality.
- Last pad (stopping point) :
 - No significant change in static mode.
 - ≻Oscillation in circulation mode.
- Energy resolution :
 - ➢ No considerable change in both modes.

- Mean energy :
 - Oscillation and it follows day and night time of the run period.
 due to temperature variation
 - → due to temperature variation.
 - Overall decrease with progressing run time.
 - due to the degradation in gas quality.
- Last pad (stopping point) :
 - No significant change in static mode.
 - ➢Oscillation in circulation mode.
- Energy resolution :
 - No considerable change in both modes.

Oscillation :

temperature dependence of electronic components as well as gas condition.

7

250

250

Data analysis steps :

- Baseline (BL) correction of the alpha, Gassiplex-pulse and Numexo-pulse mean energies.
- Correction in Gassiplex-pulse mean w.r.t. Numexo-pulse mean to rectify any change in pulse height.
- Correction in alpha mean w.r.t. corrected Gassiplex-pulse to take care the variation in Gassiplex performance.

• There is temperature (T) dependence in the measured alpha mean energy.

PV=nRT

⇒variation in gas density due to temperature change.

250

250

• Circulation mode :

Correction in alpha mean energy (after Gassiplex correction) was performed to rectify the temperature effect.

• Static mode :

Alpha mean energy does not show any temperature dependent, after the Gassiplex correction.

3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors

Fig : Measured and corrected mean energy

• Degradation in gain was observed. \implies more than the run in static mode.

<u>,</u> 1040

980

960

940

• Continuous increase in stopping point. ➡ light molecule contamination due to leakage (mostly O₂, N₂).

Fig : Difference of SP and temperature.

- Degradation in gain was observed.
 more than the run in static mode.
- System runs at low pressure.
- Continuous increase in stopping point.
 light molecule contamination due to leakage (mostly O₂, N₂).
- Even a small leakage in the system creates significant effect to the measurement over long time period.

Run in circulation mode with filter (leakage)

Degradation in gain was observed.
 more than the run in static mode.

- System is running at low pressure.
- Continuous increase in stopping point.
 light molecule contamination due to leakage (mostly O₂, N₂).
- Even a small leakage in the system creates significant effect to the measurement over long time period.

- Improvement in the set-up.
 clean circulation pump and detector chamber, leak test, etc.
- In the initial period the gain increases.
 cleaning the intrinsic impurities present in the supply gas bottle.

- Increase in SP was observed after ~ 200 hrs.
- indication of minor leakage in the system.
- Afterward, gain is almost constant.
- able to maintain an optimal level of gas purity with the filter.

- A gas regulation system incorporated with a gas purifying/cleaning unit was set up
 → understand the system in close-loop gas regulation mode
- Stable gain with gas recyling for ~ 15 days (average run time for nuclear physics experiment)

• Gain degradation rate:

Regulation mode	Degradation per day (%)
Static	0.24
CL without filter	1.17
CL with filter	Phase 1 : Gain improve
	Phase 2 : Constant gain

- A gas regulation system incorporated with a gas purifying/cleaning unit was set up
 → understand the system in close-loop gas regulation mode
- Stable gain with gas recyling for ~ 15 days (average run time for nuclear physics experiment)
 - Use of expensive isotopic gas will enforce the system to run in pure form without quencher
 - \rightarrow lower gain and sparking limit
- Upgradation in amplification methode → study with Multi-layer thick gas electron multiplier (ML-THGEM)

• Gain degradation rate:

Regulation mode	Degradation per day (%)
Static	0.24
CL without filter	1.17
CL with filter	Phase 1 : Gain improve
	Phase 2 : Constant gain

Acknowledgments

A. Giret, G. Frémont, J. Goupil, C. Houarner, M. Prieur and F. Saillant *Grand Accélérateur National d'Ions Lourds, CEA/DRF-CNRS/IN2P3, B.P. 55027, Caen, Cedex, France.*

Part of this work was financed by the grant "RIN Recherche ACTARGP 21E04801.

References

- 1. ACTAR set-up : "Commissioning of the ACtive TARget and Time Projection Chamber (ACTAR-TPC)", B. Mauss et al., Nuclear Inst. and Methods in Physics Research, A 940, 498–504 (2019).
- 2. ACTAR electronics : "GET: A generic and comprehensive electronics system for nuclear physics experiments", E. Pollacco, et al., Nucl. Instrum. Methods Phys. Res. A887, 81–93 (2018).
- 3. ACTAR Physics : "4D-imaging of drip-line radioactivity by detecting proton emission from 54mNi pictured with ACTAR TPC", J. Giovinazzo et al., Nat. Commun 12, 4805 (2021).
- 4. Gas recycling : "A portable gas recirculation unit for gaseous detectors", R. Guida and B. Mandelli JINST 12, T10002 (2017).
- 5. MAYAITO : "Report on the range and stopping power measurements of ions in gases performed at GANIL: A part of R & D for theACTAR Project", L. Gaudefroy, G. Mukherjee and F. Rejmund (2006).

THANK YOU for your attention !

3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors