

Possible hadronic work items

V. Ivanchenko CERN & Princeton University
Geant4 Hadronic group meeting
18 January 2023

Proposed work items

- Reduction of use of environment variables
- Neutron general process
- Hadron elastic process
- Neutrino processes
- Update of HP package
- Update of de-excitation module
- Disclaimer: I am proposing personal work plan, which may be completed only with the help of other developers/users of Geant4 hadronics

Reduction of use of environment variables

- There is issue #139 created by S.A.L. Fernandez:
 - https://gitlab.cern.ch/geant4/geant4-dev/-/issues/139
 - Excessive use of getenv inside Geant4
 - In the discussion Ben Morgan support the idea of needed improvements
 - I personally do not fully understand the problem but intuitively agree that excessive calls to *getenv* may be a problem, for example, at supercomputers
- A significant reduction of number of calls to getenv is implemented
 - !3388 for hadronic/management
 - There were 5*Nprocesses*Nthreads calls now only 5
 - !3396 for hadronic/cross_sections
 - From 5 to 1
 - G4LEVELGAMMADATA is called only once
 - !3389 for electromagnetic/utils
 - !3393 for standard EM
- It is proposed to complete this work
 - · Check radioactive decay and HP
 - Fix low-energy EM and DNA classes
 - I would propose to drop two variables:
 - G4HadronicProcess debug use verboseLevel instead
 - G4HADRONIC_RANDOM_FILE useless, because cannot be used for debugging

Neutron general process

- G4NeutronGeneralProcess has been releases in 11.1
 - It was design in the similar style of G4GammaGeneralProcess
 - It provides few % speed-up in preliminary tests (even in CMS)
 - It provide statistically the same results as the default neutron physics
 - It gives 0% speed-up in special build of CMSSW
- There are 2 merge request with fixes/improvements
 - !3368 optimized neutron general process
 - !3401 fixed hadron elastic process
 - They are proposed for the patch to 11.1
- Further analysis of efficiency of the method should be performed in 2023
 - To establish G4GammaGeneralProcess we spent 3 years

Hadron elastic process

- G4HadronElasticProcess is one of the key processes for hadronic physics
 - Applied on each hadron/ion
 - Affect hadronic shower shape
 - Inherit of G4HadronicProcess
- In the release 11.1 the integral approach was introduced to hadron inelastic
 - Not for hadron elastic but computation of step limit is done inside the base class
- !3401 fixed several problems of hadron elastic
 - Allowing integral approach
 - Removed obsolete try/catch constructions
- Coherent charge exchange process is a part of coherent elastic
 - This model exist inside Geant4 but was never ready for use in production
 - Inclusion of such model may affect hadronic response and should be tried
- Number of improvements are proposed to be implemented inside G4HadronElasticProcess
 - Introduce an option of coherent charge exchange model
 - Balance projectile diffraction and charge exchange
 - Extend validation samples for the charge exchange (may be summer student)

Neutrino processes

- Vladimir Grichine have been developing neutrinonuclear processes and currently we have
 - 4 process classes
 - 16 model classes
 - 6 cross sections
 - There are some problems with biasing
- It is proposed to optimize the design for neutrino physics in collaboration with V. Grichine
 - Introduction/improvement of base class(es)
 - Attempt to reduce duplications
 - Evaluate biasing method
 - Review physics constructor for neutrino

Update of HP package

- Particle HP code is used widely in various applications
 - Nuclear physics
 - HEP
 - Medical physics
 - Other applications
- There are concerns to CPU performance and code quality
 - Essential for HEP and medicine
- It is proposed to review and clean-up HP sub-library
 - Technical clean-up
 - Apply clang-tidy code format
 - Introduce C++11 elements in the code
 - Remove unused obsolete code
 - Review usage of HP parameters
 - Improve handling of the data
 - Modify G4PhysicsVector in order to speed-up HP data access
 - Add extra parameters will be needed
 - Introduced an option to use native gamma de-excitation module
 - It is expected not to touch any aspect of HP physics except de-exitation

Update of de-excitation module

- De-excitation module in Geant4 11.1 was improved
 - Significant part of bug reports are fixed
 - Most part of remaining bug reports depend on data
 - Agreement between data and MC prediction is on the same basic level
- It is proposed to continue development for the deexcitation module
 - Evaluate Fermi BreakUp model
 - Evaluate alternative GEM model
 - Evaluate multi-fragmentation model
 - Help for model improvements and validation is required