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Motivations

• General Parton Distributions (GPD) are non perturbative functions that contain a lot of 
information on the hadron structure in terms of its constituents, quarks and gluons.


• The derivation from first principles of GPD  in the entire momentum space is 
challenging: in the overlap representation within the light cone quantization, a consistent 
truncation that preserves positivity is only possible in the DGALP region ( ).


• Covariant Extension Strategy: exploiting the Radon Transform representation of the GPD that 
guarantees its polynomiality property:
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in order to estimate the Double Distribution , i.e. inverting the Radon Transform, from a partial 
knowledge of the GPD in the DGALP region and consequently reconstructing it in its whole domain.
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Generalized Parton Distribution
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•

H(x, − ξ) = H(x, ξ) ↔ h(β, − α) = h(β, α)
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Uniqueness theorem

If   is known for a subset of its domain whose points correspond to lines that span the 

entire  domain (except for the axis  that corresponds to the D-term), then 

 is unique.
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h(β, α) β = 0
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 restricted to the DGLAP region  corresponds to a unique H(x, ξ) |x | > |ξ | h(β, α)

[F. Natterer,  The Mathematics of Computerized Tomography]

Even a smaller subset of the DGALP region, where the skewness parameter is 

bounded from above  corresponds to a unique 0 < ξ < ξmax h(β, α)

In experiments only a limited range of  available ξ



β

α

hANN(β, α)

w(1)
β1 1

2

3

Nw(1)
αN

w(2)
1

w(2)
N

b(1)
1

b(2)

b(1)
N

Artificial Neural Networks

Universal approximation theorem: continuous function on compact approximated by ANN with one hidden layer

ANN used to approximate the DD h(β, α)
Output of neuron  at layer    i j
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H. Dutrieux et al., Eur.Phys.J.C 82 (2022)



Algorithm

• Initialize the NN parameters (randomly).     


• Given a sampling set of GPD values  in the DGALP region, numerically evaluate the   

RT along each linea  using  as DD. .


• Update the NN parameters using some optimization algorithm (gradient descent, genetic 

algorithm…) in order to minimize some loss function, e.g.


• Iterate until convergence.
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Note: This numerical approach is complementary to the Finite Element Methods implemented by


        J.M. Morgado (see his talk on Friday)



Nakanishi based model for pion
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N. Chouika et al., Phys.Lett B:780 (2018)

Output of the ANN hidden layer: oi = φ (wβi β + wαi α′ + bi) + wαi → − wαi

Imposes 


from 

hANN(β, − α) = hANN(β, α)

H(x, − ξ) = H(x, ξ)

α′ =
α

1 − |β |
∈ [−1,1]



ξmax = 1

Npoints = 104 , Nneurons = 100 , Dropout regularization r = 0.03 , ADAM optimizer lr = 0.001



ξmax = 0.75

Npoints = 104 , Nneurons = 100 , Dropout regularization r = 0.0005 , ADAM optimizer lr = 0.0005



ξmax = 0.5

Npoints = 104 , Nneurons = 100 , Dropout regularization r = 0.00001 , ADAM optimizer lr = 0.0001



GK model S.V. Goloskokov, P. Kroll, Eur.Phys.J.C 50 (2007) 

H(x, ξ) = ∫Ω
dβdα δ (x − β − αξ) q(β) hGK(β, α) , hGK(β, α) =
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Output of the ANN hidden layer: oi = φ (wβi β + wαi
α
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+ bi) − φ (wβi β + wαi + bi) + wαi → − wαi

Imposes  on the boundary 

(no bias parameter on the last layer)

hANN(β, α) = 0

H. Dutrieux et al., Eur.Phys.J.C 82 (2022)

hGK(β, α) ≃
hANN(β, α)

∫ 1−|β|
−1+|β|

dα hANN(β, α)
Imposes the correct normalization to recover the forward limit



Valence distribution qu
val(β) = β−δ(1 − β)2n+1

2

∑
j=0

cj β j/2 , n = 1, δ = 0.48

Npoints = 103 , Nneurons = 25 , Dropout regularization r = 0.1 , ADAM optimizer lr = 0.001

ξmax = 1



ξmax = 0.5 , r = 0.001 ξmax = 0.01 , r = 0



ANN trained only with  data (Compton form factor at first order)x = ξ

Npoints = 103 , Nneurons = 25 , Dropout regularization r = 0.1 , ADAM optimizer lr = 0.001



Sea distribution qsea(β) = β−δ(1 − β)2n+1
3
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ξmax = 1

H(x, ξ) = ∫Ω
dβdα δ (x − β − αξ) sign(β) q( |β | ) hGK( |β | , α) → H(−x, ξ) = − H(x, ξ)



Conclusions

• ANN are a suitable tool for numerically solving inverse problems such as inverting the Radon 
Transform of a GPD.


• Different GPD models require different ANN parameters and setups (and their convergence 
speed can be very different).


• Inverting the Radon Transform using only data from a proper subset of its domain is feasible.


• The uncertainties regarding the GPD reconstructions may be lowered by a more careful tuning 
of the ANN parameters and by increasing the number of iterations.


