Diquarks, baryons, and transition form factors

Khépani Raya Montaño

MeV2TeV 2023 Feb 16-17, 2022. Córdoba (Spain)

A data-driven construction of the pion GPD

Khépani Raya Montaño

Universidad

de Huelva

MeV2TeV 2023

Feb 16-17, 2022. Córdoba (Spain)

QCD: Basic Facts

- QCD is characterized by two emergent phenomena: confinement and dynamical generation of mass (DGM).
- Quarks and gluons not *isolated* in nature.
- → Formation of colorless bound states: "<u>Hadrons</u>"
- **1-fm scale** size of hadrons?

 Emergence of hadron masses (EHM) from QCD dynamics

QCD: Basic Facts

QCD is characterized by two emergent phenomena: confinement and dynamical generation of mass (DGM).

Can we trace them down to fundamental d.o.f?

 $\mathcal{L}_{\text{QCD}} = \sum_{j=u,d,s,\dots} \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu},$ $D_\mu = \partial_\mu + ig \frac{1}{2} \lambda^a A^a_\mu,$ $G^a_{\mu\nu} = \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - \underline{g} f^{abc} A^b_\mu A^c_\nu,$

 Emergence of hadron masses (EHM) from QCD dynamics

Gluon and quark running masses

QCD: Basic Facts

QCD is characterized by two emergent phenomena: confinement and dynamical generation of mass (DGM).

Can we trace them down to fundamental d.o.f?

 $\begin{aligned} \mathcal{L}_{\text{QCD}} &= \sum_{j=u,d,s,\dots} \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}, \\ D_\mu &= \partial_\mu + ig \frac{1}{2} \lambda^a A^a_\mu, \\ G^a_{\mu\nu} &= \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - \underline{g f^{abc}} A^b_\mu A^c_\nu, \end{aligned}$

 Emergence of hadron masses (EHM) from QCD dynamics

Gluon and quark running masses

Pion Structure

Pion

• "Two" quark bound-state

- Archetype of nuclear exchange forces
 - Our favorite mediator
- The lightest hadron in nature

Pion Structure

Pion

• "Two" quark bound-state

Unlike the proton, pion is massless in the absence of Higgs mass generation

- Archetype of nuclear exchange forces
 - Our favorite mediator
- The lightest hadron in nature

- Both a quark-antiquark bound-state and a Golstone Boson
 - Its mere existence is connected with mass generation in the SM

Pion Structure

> The experimental access to the pion structure is via electromagnetic probes, yielding e.g.:

> Generalized parton distributions (GPDs) encode them **both** (and many more):

$$F_{\pi}(\Delta^{2}) = \int H_{\pi}^{u}(x,\xi,-\Delta^{2};\zeta), \ u^{\pi}(x;\zeta) = H_{\pi}^{u}(x,0,0;\zeta)$$

But the experimental access and theoretical derivation is far more complicated.

> Question:

From 1-dimensional distributions (EFF and PDF), can we obtain the 3-dimensional GPD?

> Question:

From 1-dimensional distributions (EFF and PDF), can we obtain the 3-dimensional GPD?

Partial Answer:

Yes, we can. Under two premises:

There exists at least one effective charge such that, when used to integrate the leading-order perturbative DGLAP equations, an evolution scheme for parton DFs is defined that is all-order exact.

Pp's talk

> Question:

From 1-dimensional distributions (EFF and PDF), can we obtain the 3-dimensional GPD?

Partial Answer:

Yes, we can. Under two premises:

- There exists at least one effective charge such that, when used to integrate the leading-order perturbative DGLAP equations, an evolution scheme for parton DFs is defined that is **all-order** exact.
- → A factorised representation of the pion light-front wave function (LFWF), from which the (DGLAP) GPD is derived, at the hadronic scale, is a sensible approximation.

Overlap:
$$H^u_{\pi}(x,\xi,-\Delta^2;\zeta_H) = \int \frac{d^2k_{\perp}}{16\pi^3} \psi^{u*}_{\pi}(x_-,k_{\perp-}^2;\zeta_H) \psi^u_{\pi}(x_+,k_{\perp+}^2;\zeta_H)$$

 $\psi^{u}_{\pi}(x,k_{\perp}^{2};\zeta_{H}) = \tilde{\psi}^{u}_{\pi}(k_{\perp}^{2})[u^{\pi}(x;\zeta_{H})]^{1/2}$

Factorization:

Light-front wave functions

 $\psi^u_\mathsf{P}(x,k_\perp^2;\zeta)$

"One ring to rule them all"

Raya:2021zrz Raya:2022eqa

Light-front wave functions

Many distributions are related via the leadingtwist light-front wave function (LFWF), e.g.:

Distribution amplitudes

Distribution functions

$$f_{\mathsf{P}}\varphi_{\mathsf{P}}^{u}(x,\zeta_{\mathcal{H}}) = \int \frac{dk_{\perp}^{2}}{16\pi^{3}}\psi_{\mathsf{P}}^{u}\left(x,k_{\perp}^{2};\zeta_{\mathcal{H}}\right)$$
$$u^{\mathsf{P}}(x;\zeta_{\mathcal{H}}) = \int \frac{d^{2}k_{\perp}}{16\pi^{3}}\left|\psi_{\mathsf{P}}^{u}\left(x,k_{\perp}^{2};\zeta_{\mathcal{H}}\right)\right|^{2}$$

In the DGLAP kinematic domain, this is also the case of the valence-quark GPD:

$$H^{u}_{\mathsf{P}}(x,\xi,t;\zeta_{\mathcal{H}}) = \int \frac{d^{2}k_{\perp}}{16\pi^{3}} \psi^{u*}_{\mathsf{P}}\left(x_{-},k_{\perp-}^{2};\zeta_{\mathcal{H}}\right) \psi^{u}_{\mathsf{P}}\left(x_{+},k_{\perp+}^{2};\zeta_{\mathcal{H}}\right)$$

$$x_{\mp} = (x \mp \xi) / (1 \mp \xi), \ t = -\Delta^2$$

$$k_{\perp\mp} = k_{\perp} \pm (\Delta_{\perp}/2)(1-x) / (1 \mp \xi)$$

 The overlap approach guarantees the positivity of the GPD.

- It is, in principle, limited to the DGLAP kinematic region. $|x| \le \xi$
- Nonetheless, it can be exteded to the ERBL domain.

JM and Pietro's talks Chavez: 2021koz

Many distributions are related via the leadingtwist light-front wave function (LFWF), e.g.:

Distribution amplitudes

Distribution functions

$$u^{\mathsf{P}}(x;\zeta_{\mathcal{H}}) = \int \frac{d^2k_{\perp}}{16\pi^3} \left|\psi^{u}_{\mathsf{P}}\left(x,k_{\perp}^{2};\zeta_{\mathcal{H}}\right)\right|^2$$

 $f_{\mathsf{P}}\varphi_{\mathsf{P}}^{u}(x,\zeta_{\mathcal{H}}) = \int \frac{dk_{\perp}^{2}}{16\pi^{3}}\psi_{\mathsf{P}}^{u}\left(x,k_{\perp}^{2};\zeta_{\mathcal{H}}\right)$

> This connection already suggests that:

$$u^{\mathbf{P}}(x;\zeta_H) \sim [\varphi^u_{\mathbf{P}}(x;\zeta_H)]^2$$

is a fair approximation, implying:

$$\psi_{\mathbf{P}u}^{\uparrow\downarrow}(x,k_{\perp}^2;\zeta_H) = \tilde{\psi}_{\mathbf{P}u}^{\mathbf{u}}(k_{\perp}^2) \left[u^{\mathbf{P}}(x;\zeta_H) \right]^{1/2}$$

 \blacktriangleright In fact, we have learned that *x-k* crossed terms are weighted by: $M_{\mathbf{P}}^2$, $M_{\bar{h}}^2 - M_q^2$ (factorised LFWF)

→So a factorised Ansatz should be sensible for the pion, implying:

$$H^{u}_{\mathsf{P}}(x,\xi,t;\zeta_{\mathcal{H}}) = \Theta(x_{-})\sqrt{u^{\mathsf{P}}(x_{-};\zeta_{H})u^{\mathsf{P}}(x_{+};\zeta_{H})}\Phi_{\mathsf{P}}(z;\zeta_{H}) \qquad z = \frac{(1-x)^{2}}{(1-\xi^{2})^{2}}\Delta_{\perp}^{2}$$

Idea. Define an effective coupling such that:

"All orders evolution"Starting from fully-dressed
quasiparticles, at
$$\zeta_H$$
See and Gluon content unveils,
as prescribed by QCD $\left\{\zeta^2 \frac{d}{d\zeta^2} \int_0^1 dy \delta(y-x) - \left(\frac{\alpha(\zeta^2)}{4\pi}\right) \int_x^1 \frac{dy}{y} \left(\begin{array}{c} P_{qq}^{NS} \left(\frac{x}{y}\right) & 0\\ 0 & \mathbf{P}^S \left(\frac{\mathbf{x}}{\mathbf{y}}\right) \end{array} \right) \right\} \left(\begin{array}{c} H_{\pi}^{NS,+}(y,t;\zeta) \\ \mathbf{H}_{\pi}^S(y,t;\zeta) \end{array} \right) = 0$ \cdot Not the LO QCD coupling but an effective one. \cdot Making this equation exact. \cdot And connecting with the hadron scale.

Raya:2021zrz

Cui:2020tdf

Implication 1:

$$\langle x^{n}(\zeta_{f})\rangle_{q} = \exp\left(-\frac{\gamma_{qq}^{(n)}}{4\pi}S(\zeta_{H},\zeta_{f})\right)\langle x^{n}(\zeta_{H})\rangle_{q}$$
$$S(\zeta_{0},\zeta_{f}) = \int_{2\ln(\zeta_{0}/\Lambda_{\rm QCD})}^{2\ln(\zeta_{f}/\Lambda_{\rm QCD})}dt\,\alpha(t)$$

Explicitly depending on the effective charge

$$\langle x^n(t;\zeta) \rangle_F = \int_0^1 dx \, x^n \, F(x,t;\zeta)$$

$$\gamma_{AB}^{(n)} = -\int_0^1 \, dx \, x^n P_{AB}^C(x)$$

• The **QCD PI effective charge** is our best candidate to accommodate our **all orders scheme**.

Implication 1:

$$\langle x^{n}(\zeta_{f})\rangle_{q} = \exp\left(-\frac{\gamma_{qq}^{(n)}}{4\pi}S(\zeta_{H},\zeta_{f})\right)\langle x^{n}(\zeta_{H})\rangle_{q} = \langle x^{n}(\zeta_{H})\rangle_{q} \left(\frac{\langle x(\zeta_{f})\rangle_{q}}{\langle x(\zeta_{H})\rangle_{q}}\right)^{\gamma_{qq}^{(n)}/\gamma_{qq}^{(1)}}$$

$$S(\zeta_{0},\zeta_{f}) = \int_{2\ln(\zeta_{f}/\Lambda_{QCD})}^{2\ln(\zeta_{f}/\Lambda_{QCD})} dt \,\alpha(t)$$
This contains, *implicitly*, the information of the effective charge

- No actual need to know it. <u>Assuming its existence is sufficient.</u>
- Unambiguous definition of the hadron scale:

$$\langle x(\zeta_H) \rangle_q = 0.5 \Rightarrow \langle x^n(\zeta_f) \rangle_q = \langle x^n(\zeta_H) \rangle_q (\langle 2x(\zeta_f) \rangle_q)^{\gamma_{qq}^{(n)}/\gamma_{qq}^{(1)}}$$

(flavor symmetric case)

Implication 1:

$$\langle x^{n}(\zeta_{f})\rangle_{q} = \exp\left(-\frac{\gamma_{qq}^{(n)}}{4\pi}S(\zeta_{H},\zeta_{f})\right)\langle x^{n}(\zeta_{H})\rangle_{q} = \langle x^{n}(\zeta_{H})\rangle_{q} \left(\underbrace{\frac{\langle x(\zeta_{f})\rangle_{q}}{\langle x(\zeta_{H})\rangle_{q}}}_{\mathbf{V}}\right)^{\gamma_{qq}^{(n)}/\gamma_{qq}^{(1)}}$$
Information on the charge is here

- Details of the effective charge are **encoded** in the ratio of first moments.
- Natural connection with the hadron scale.

Implication 2:

$$\begin{aligned} \langle 2x(\zeta_f) \rangle_q &= \exp\left(-\frac{8}{9\pi}S(\zeta_H,\zeta_f)\right), \qquad q = u, \bar{d}; \\ \langle x(\zeta_f) \rangle_{\text{sea}} &= \langle x(\zeta_f) \rangle_{\sum_q q + \bar{q}} - (\langle x(\zeta_f) \rangle_u + \langle x(\zeta_f) \rangle_{\bar{d}}), \\ &= \frac{3}{7} + \frac{4}{7} \langle 2x(\zeta_f) \rangle_u^{7/4} - \langle 2x(\zeta_f) \rangle_u \\ \langle x(\zeta_f) \rangle_g &= \frac{4}{7} \left(1 - \langle 2x(\zeta_f) \rangle_u^{7/4}\right); \end{aligned}$$

• Sea and gluon determined from valencequark moments

Implication 1:

$$\langle x^{n}(\zeta_{f})\rangle_{q} = \exp\left(-\frac{\gamma_{qq}^{(n)}}{4\pi}S(\zeta_{H},\zeta_{f})\right)\langle x^{n}(\zeta_{H})\rangle_{q} = \langle x^{n}(\zeta_{H})\rangle_{q} \left(\frac{\langle x(\zeta_{f})\rangle_{q}}{\langle x(\zeta_{H})\rangle_{q}}\right)^{\gamma_{qq}^{(n)}/\gamma_{qq}^{(1)}}$$

Information on the charge is here

- Can jump from one scale to another (both ways)
- Natural connection with the hadron scale.

Implication 2:

$$\begin{aligned} \langle 2x(\zeta_f) \rangle_q &= \exp\left(-\frac{8}{9\pi}S(\zeta_H,\zeta_f)\right), \qquad q = u, \bar{d}; \\ \langle x(\zeta_f) \rangle_{\text{sea}} &= \langle x(\zeta_f) \rangle_{\sum_q q + \bar{q}} - (\langle x(\zeta_f) \rangle_u + \langle x(\zeta_f) \rangle_{\bar{d}}), \\ &= \frac{3}{7} + \frac{4}{7} \langle 2x(\zeta_f) \rangle_u^{7/4} - \langle 2x(\zeta_f) \rangle_u \\ \langle x(\zeta_f) \rangle_g &= \frac{4}{7} \left(1 - \langle 2x(\zeta_f) \rangle_u^{7/4}\right); \end{aligned}$$

- Sea and gluon determined from valencequark moments
- Asymptotic (massless) limits are evident.

Implication 1:

$$\langle x^{n}(\zeta_{f})\rangle_{q} = \exp\left(-\frac{\gamma_{qq}^{(n)}}{4\pi}S(\zeta_{H},\zeta_{f})\right)\langle x^{n}(\zeta_{H})\rangle_{q} = \langle x^{n}(\zeta_{H})\rangle_{q} \left(\underbrace{\frac{\langle x(\zeta_{f})\rangle_{q}}{\langle x(\zeta_{H})\rangle_{q}}}_{\mathbf{V}}\right)^{\gamma_{qq}^{(n)}/\gamma_{qq}^{(1)}}$$
Information on the charge is here

- Can jump from one scale to another (both ways)
- Natural connection with the hadron scale.

Implication 2:

$$\begin{aligned} \langle 2x(\zeta_f) \rangle_q &= \exp\left(-\frac{8}{9\pi}S(\zeta_H,\zeta_f)\right), \qquad q = u, \bar{d}; \\ \langle x(\zeta_f) \rangle_{\text{sea}} &= \langle x(\zeta_f) \rangle_{\sum_q q + \bar{q}} - (\langle x(\zeta_f) \rangle_u + \langle x(\zeta_f) \rangle_{\bar{d}}), \\ &= \frac{3}{7} + \frac{4}{7} \langle 2x(\zeta_f) \rangle_u^{7/4} - \langle 2x(\zeta_f) \rangle_u \\ \langle x(\zeta_f) \rangle_g &= \frac{4}{7} \left(1 - \langle 2x(\zeta_f) \rangle_u^{7/4}\right); \end{aligned}$$

- Sea and gluon determined from valencequark moments
- Asymptotic (massless) limits are evident.
- And, of course, the momentum **sum rule**:

 $\langle 2x(\zeta_f) \rangle_q + \langle x(\zeta_f) \rangle_{\text{sea}} + \langle x(\zeta_f) \rangle_g = 1$

Implication 1:

$$\langle x^{n}(\zeta_{f})\rangle_{q} = \exp\left(-\frac{\gamma_{qq}^{(n)}}{4\pi}S(\zeta_{H},\zeta_{f})\right)\langle x^{n}(\zeta_{H})\rangle_{q} = \langle x^{n}(\zeta_{H})\rangle_{q} \left(\underbrace{\frac{\langle x(\zeta_{f})\rangle_{q}}{\langle x(\zeta_{H})\rangle_{q}}}_{\mathbf{V}}\right)^{\gamma_{qq}^{(n)}/\gamma_{qq}^{(1)}}$$
Information on the charge is here

- Can jump from one scale to the another (even downwards)
- Natural connection with the hadron scale.

Implication 3: Recurrence relation

$$\begin{aligned} \langle x^{2n+1} \rangle_{u_{\pi}}^{\zeta} &= \frac{(\langle 2x \rangle_{u_{\pi}}^{\zeta}) \gamma_{0}^{2n+1} / \gamma_{0}^{1}}{2(n+1)} \\ &\times \sum_{j=0,1,\dots}^{2n} (-)^{j} \left(\begin{array}{c} 2(n+1) \\ j \end{array} \right) \langle x^{j} \rangle_{u_{\pi}}^{\zeta} (\langle 2x \rangle_{u_{\pi}}^{\zeta})^{-\gamma_{0}^{j} / \gamma_{0}^{1}} \,. \end{aligned}$$

• Since isospin symmetry limit implies:

$$q(x;\zeta_H) = q(1-x;\zeta_H)$$

- Odd moments can be expressed in terms of previous even moments.
- Thus arriving at the recurrence **relation** on the left.

• Fully-dressed valence quarks (quasiparticles)

• Unveiling of glue and sea d.o.f (partons)

Reverse engineering: PDF data

Pion PDF

0.0

0.0

0.2

Let us assume the data can be parameterized with a certain functional form, i.e.:

$$\mathcal{U}^{\pi}(x; [\alpha_i]; \zeta) = n_u^{\zeta} x^{\alpha_1^{\zeta}} (1-x)^{\alpha_2^{\zeta}} (1+\alpha_3^{\zeta} x^2)$$
Normalization
$$\{\alpha_i^{\zeta} | i = 1, 2, 3\}$$
Free parameters
$$\overset{0.5}{\underset{\times}{0.4}}_{i \in \mathbb{N}} \overset{0.5}{\underset{\times}{0.2}}_{i \in \mathbb{N}} \overset{0.5}{\underset{\times}{0.2}}_{i \in \mathbb{N}} \overset{0.5}{\underset{\times}{0.2}}_{i \in \mathbb{N}} \overset{0.5}{\underset{\times}{0.2}} \overset{0.5}{\underset{\times}{0.2}}_{i \in \mathbb{N}} \overset{0.5}{\underset{\times}{0.2}} \overset{0.5}{\underset{\times}{0.2}}_{i \in \mathbb{N}} \overset{0.5}{\underset{\times}{0.2}} \overset{0.5}{\underset$$

0.4

Х

0.6

0.8

 \succ Then, we proceed as follows:

1) Determine the **best values** α_i via least-squares fit to the data.

2) Generate new values α_i , distributed randomly around the best fit.

3) Using the latter set, evaluate:

4) Accept a replica with probability:

$$\mathcal{P} = \frac{P(\chi^2; d)}{P(\chi_0^2; d)}, \ P(y; d) = \frac{(1/2)^{d/2}}{\Gamma(d/2)} y^{d/2 - 1} e^{-y/2}$$

5) Evolve back to ζ_H

Repeat (2-5).

Pion PDF: ASV Data

Applying this algorithm to the ASV data yields:

(average)

 $\label{eq:mean values (of moments) and errors $$ $$ \{0.5, 2.75144 \times 10^{-17}\}, \{0.299833, 0.00647045\}, \{0.199907, 0.00735448\}, \{0.142895, 0.0068623\}, $$ \{0.107274, 0.00608759\}, \{0.0835168, 0.00532834\}, \{0.0668711, 0.0046596\}, $$ \{0.0547511, 0.00409028\}, \{0.0456496, 0.00361041\}, \{0.0386394, 0.00320609\} $$ $$ \}$

Moments from SCI, 🖧

{0.5, 0.332885, 0.249327, 0.199231, 0.165865, 0.142056, 0.124215, 0.11035, 0.0992657, 0.090203, 0.0826552, 0.0762721, 0.0708035, 0.06606661, 0.0619225}

- The produced moments are compatible with a symmetric PDF at the hadronic scale.
- ✓ Not at all similar to those from SCI

Pion PDF: ASV Data

> Applying this algorithm to the **ASV data** yields:

Mean values (of moments) and errors

 $\{ \{ 0.5, 2.75144 \times 10^{-17} \}, \{ 0.299833, 0.00647045 \}, \{ 0.199907, 0.00735448 \}, \{ 0.142895, 0.0068623 \}, \\ \{ 0.107274, 0.00608759 \}, \{ 0.0835168, 0.00532834 \}, \{ 0.0668711, 0.0046596 \}, \\ \{ 0.0547511, 0.00409028 \}, \{ 0.0456496, 0.00361041 \}, \{ 0.0386394, 0.00320609 \} \}$

Then, we can reconstruct the moments produced by each replica, using the single-parameter Ansatz:

- The produced moments are compatible with a symmetric PDF at the hadronic scale.
- ✓ It exhibits a soft end-point behavior...

Pion PDF: Lattice Data

We can follow an analogous procedure to infer, based upon lattice data, how the hadronic scale PDF should look like.

Let us consider the list of lattice QCD moments:

n	[61]	[62]	[63]
1	0.254(03)	0.18(3)	0.23(3)(7)
2	0.094(12)	0.064(10)	0.087(05)(08)
3	0.057(04)	0.030(05)	0.041(05)(09)
4	Joo:2019bzr		0.023(05)(06)
5	Sufian:2019bol		0.014(04)(05)
6	Alexandrou:2021mmi		0.009(03)(03)

 \succ Those verify the recurrence relation, thus being compatible with a symmetric PDF at $\,\zeta_H\,$

 \blacktriangleright While also falling within the **physical bounds**.

 $\frac{1}{2^n} \le \langle x^n \rangle_{u_\pi}^{\zeta} (\langle 2x \rangle_{u_\pi}^{\zeta})^{-\gamma_0^n/\gamma_0^1} \le \frac{1}{1+n}$

Produced by
$$q(x;\zeta_H)=\delta(x-1/2)$$

Produced by $q(x; \zeta_H) = 1$

(infinitely heavy valence quarks)

(massless SCI case)

Pion PDF: Recap.

- The (original) experimental data yield a hadronic scale PDF compatible with SCI results.
 - Thus should be disfavored since it does not produce the expected large-x behavior.
- Both (ASV) experimental and lattice data yield hadronic scale PDFs exhibiting soft end-point behavior and EHM-induced broadening.
- The results are compatible, although current precision of the lattice moments still leaves us with a somewhat wide band of uncertainty.
- Thus we focus on the ASV data for the rest of the discussion.

LFWF: Factorized models Rava: 2021zrz Starting with a factorized LFWF, $\psi_{\mathbf{P}u}^{\uparrow\downarrow}(x,k_{\perp}^{2};\zeta_{H}) = \tilde{\psi}_{\mathbf{P}u}^{\mathbf{u}}(k_{\perp}^{2}) \left[u^{\mathbf{P}}(x;\zeta_{H}) \right]^{1/2}$ The overlap representation for the GPD entails: This one shall be obtained as $H^{u}_{\mathsf{P}}(x,\xi,t;\zeta_{\mathcal{H}}) = \int \frac{d^{2}k_{\perp}}{16\pi^{3}} \psi^{u*}_{\mathsf{P}}\left(x_{-},k_{\perp-}^{2};\zeta_{\mathcal{H}}\right) \psi^{u}_{\mathsf{P}}\left(x_{+},k_{\perp+}^{2};\zeta_{\mathcal{H}}\right)$ described previously $=\Theta(x_{-})\sqrt{u^{\mathbf{P}}(x_{-};\zeta_{H})u^{\mathbf{P}}(x_{+};\zeta_{H})\Phi_{\mathbf{P}}(z;\zeta_{H})}$ This dictates the off-forward Heaviside Theta behavior of the GPD ▶ Where $z = s_{\perp}^2 = -t(1-x)^2/(1-\xi^2)^2$ and: ... will be driven by the electromagnetic form factor $\Phi_{\mathbf{P}}^{u}(z;\zeta_{H}) = \int \frac{d^{2}\mathbf{k}_{\perp}}{16\pi^{3}} \widetilde{\psi}_{\mathbf{P}}^{u*}\left(\mathbf{k}_{\perp}^{2};\zeta_{H}\right) \widetilde{\psi}_{\mathbf{P}}^{u}\left(\left(\mathbf{k}_{\perp}-\mathbf{s}_{\perp}\right)^{2};\zeta_{H}\right)$

Setting the Stage

 \succ Recall a GPD arising from a factorised LFWF adopts the form:

$$H_{\pi}^{u}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})} \Phi^{\pi}(z^{2};\zeta_{H})$$

$$u^{\pi}(x;\zeta_{H}) = n_{0}\ln(1+x^{2}(1-x)^{2}/\rho^{2})$$
The empirical data on PDF to contrast with:
• ASV analysis.
• MF resummation.
• Lattice QCD moments.
For references, see:
Cui:2022bxn
Cui:202

Setting the Stage

1.0

0.8

0.4

0.2

0.0 **´**0.0

0.5

1.0

 Δ^2 [GeV²]

 $F_{\pi}(\Delta^2)$

 $F_{\pi}(t) = \int_{0}^{1} dx \, u^{\pi}(x;\zeta_{H}) \Phi_{\pi}(z;\zeta_{H})$

So B al

"Gaussian" error

We thus employ a 3-parameter model for the

ŧ

2.0

1.5

ē

2.5

We thus employ a 3-parameter model for the GPD::

$$H^{u}_{\pi}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})} \Phi^{\pi}(z^{2};\zeta_{H})$$

$$\lambda = \beta - \frac{r_{\pi}^{2}}{6\langle x^{2}\rangle_{u_{\pi}}^{\zeta_{H}}} \Phi^{\pi}(y;\zeta_{H}) = \frac{1+\lambda y}{1+\beta y+\gamma^{2}y^{2}}$$

 \blacktriangleright The empirical data on **EFF**:

JLab data.

Charge radius:
$$r_{\pi} = 0.64(2) \, \text{fm}$$

Cui:2021aee

• Given r_{π} , low-Q² data is redundant.

The Algorithm

$$H^{u}_{\pi}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})} \Phi^{\pi}(z^{2};\zeta_{H})$$

1. For the chosen **PDF data** set, generate a **replica**. The replica would be accepted following the aforementioned *chi-2* criteria.

2. After acceptance, **evolve** it to the **hadronic scale** using many Mellin moments. The *de-evolved* PDF shall be reconstructed using the functional form:

$$u^{\pi}(x;\zeta_H) = n_0 \ln(1 + x^2(1-x)^2/\rho^2)$$

3. Store both the value ρ_i and the probability of acceptance $P(\rho_i)$.

The Algorithm

$$H^{u}_{\pi}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})} \Phi^{\pi}(z^{2};\zeta_{H})$$

4. Keeping the selected **PDF**, we now constrast Φ with the **EFF** data, via:

$$F_{\pi}(t) = \int_{0}^{1} dx \, u^{\pi}(x;\zeta_{H}) \Phi_{\pi}(z;\zeta_{H}) \qquad \Phi^{\pi}(y;\zeta_{H}) = \frac{1+\lambda y}{1+\beta y + \gamma^{2} y^{2}} \quad \lambda = \beta - \frac{r_{\pi}^{2}}{6\langle x^{2}\rangle_{u_{\pi}}^{\zeta_{H}}}$$

5. Employing a *chi-2* criteria, we compute the probability of acceptance $P(\Phi_i | \rho_i)$.

6. The GPD is accepted with probability $P(\Phi_i | \rho_i) P(\rho)$.

REPEAT

Numerical Results

$$H^{u}_{\pi}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})} \Phi^{\pi}(z^{2};\zeta_{H})$$

> Applying this procedure, from the pion **PDF** and **EFF** empirical data, one gets the **GPDs**:

Pion EFF

$$H^{u}_{\pi}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})} \Phi^{\pi}(z^{2};\zeta_{H})$$

> For the **EFF**, we essentially arrive at the same results.

Pion PDF

$$H^{u}_{\pi}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})} \Phi^{\pi}(z^{2};\zeta_{H})$$

> The **PDFs** agree within errors, but...

• Lattice QCD cannot distinguish between ASV, MF or the *scale-free* profiles.

Mass Distribution

> The first Mellin moment of the GPD yields the gravitational form factors:

$$\int_{-1}^{1} dx \, 2x H_{\pi}^{u}(x,\xi,-\Delta^{2} \zeta) = \theta_{2}^{\pi}(\Delta^{2}) - \xi^{2} \theta_{1}^{\pi}(\Delta^{2})$$

> θ_1 currently escapes our approach, but θ_2 is within reach:

$$\theta_2^{\pi}(\Delta^2) = \int_0^1 dx \, 2x H_{\pi}(x,\xi=0,-\Delta^2)$$

 θ_2 is associated with the **mass distribution.**

ASVMFlQCD $r_{\pi}^{\theta_2}$ 0.518(16)0.498(14)0.512(21)Recall: $r_{\pi} = 0.64(2)$ fm

About Radii

$$H^{u}_{\mathbf{P}}(x,\xi,t;\zeta_{H}) = \theta(x_{-}) \left[u^{\mathbf{P}}(x_{-};\zeta_{H}) u^{\mathbf{P}}(x_{+};\zeta_{H}) \right]^{1/2} \Phi_{\mathbf{P}}(z;\zeta_{H})$$

• In the **factorized** models:

$$\frac{\partial}{\partial z} \Phi_{\mathsf{P}}^{u}(z;\zeta_{\mathcal{H}})\Big|_{z=0} = -\frac{r_{\mathsf{P}}^{2}}{4\chi_{\mathsf{P}}^{2}(\zeta_{\mathcal{H}})},$$
$$\frac{\partial}{\partial z} \Phi_{\mathsf{P}}^{\bar{h}}(z;\zeta_{\mathcal{H}})\Big|_{z=0} = (1 - d_{\mathsf{P}})\frac{\partial}{\partial z} \Phi_{\mathsf{P}}^{u}(z;\zeta_{\mathcal{H}})\Big|_{z=0}$$

Asymmetry term = 0 for pion

• Therefore, the mass radius:

$$r_{\mathsf{P}_{u}}^{\theta_{2}^{2}} = \frac{3r_{\mathsf{P}}^{2}}{2\chi_{\mathsf{P}}^{2}} \langle x^{2}(1-x) \rangle_{\mathsf{P}_{\bar{h}}},$$

$$r_{\mathsf{P}_{\bar{h}}}^{\theta_{2}^{2}} = \frac{3r_{\mathsf{P}}^{2}}{2\chi_{\mathsf{P}}^{2}} (1-d_{\mathsf{P}}) \langle x^{2}(1-x) \rangle_{\mathsf{P}_{u}}$$

$$\left(\frac{r_{\pi}^{\theta_2}}{r_{\pi}^E}\right)^2 = \frac{\langle x^2(1-x) \rangle_{\zeta_H}^q}{\langle x^2 \rangle_{\zeta_H}^q} \approx \left(\frac{4}{5}\right)^2$$

Determined from PDF moments!

IPS GPDs

А

0

3

2

1

Impact parameter space **GPDs** are defined as: ۶

$$u^{\pi}(x, b_{\perp}^2; \zeta_{\mathcal{H}}) = \int_0^\infty \frac{d\Delta}{2\pi} \Delta J_0(|b_{\perp}|\Delta) H^u_{\pi}(x, 0, -\Delta^2; \zeta_{\mathcal{H}}) \qquad u^{\pi}(x, 0, -\Delta^2; \zeta_{\mathcal{H}})$$

 b_{\perp}/r_{π} B b_1/r_{π} $2\pi b_{\perp} u_{\pi}(x,b_{\perp};\zeta_H) r_{\pi}$ $2 \pi b_{\perp} u_{\pi} (x, b_{\perp}; \zeta_H) r_{\pi}$ 0 0.5 x x 0.0 0.0

> Such that, in **factorized** models:

$$u^{\pi}(x, b_{\perp}^{2}; \zeta_{H}) = \frac{u^{\pi}(x; \zeta_{H})}{(1-x)^{2}} \Psi^{\pi}\left(\frac{|b_{\perp}|}{1-x}; \zeta_{H}\right)$$

> The location and values of the maxima:

	x	b_{\perp}/r_{π}	i_{π}
$\operatorname{CSM}\left[57\right]$	0.88	0.13	3.29
ASV	0.89(2)	0.10(2)	3.21(30)
MF	0.95(1)	0.05(1)	4.58(50)
lQCD	0.91(6)	0.08(5)	4.04(1.67)

→ Furthermore:

$$\langle b_{\perp}^2(\zeta_{\mathcal{H}})\rangle_u^{\pi} = \frac{2}{3}r_{\pi}^2 = \langle b_{\perp}^2(\zeta_{\mathcal{H}})\rangle_{\bar{d}}^{\pi}$$

Algebraic result !

Distributions: Mass & Charge

> **Density** distributions are obtained by integrating the **IPS-GPD.**

The narrower curves correspond to the mass distribution, demonstrating that: Charge effects span over a larger domain than mass effects.

> Question:

From the empirical knowledge of 1-dimensional distributions (EFF and PDF), can we obtain the 3dimensional GPD?

$$u^{\pi}(x;\zeta_{e/l}), F_{\pi}(\Delta^2) \longrightarrow H_{\pi}(x,\xi,-\Delta^2;\zeta)$$
??

> **Question:**

From the empirical knowledge of 1-dimensional distributions (EFF and PDF), can we obtain the 3dimensional GPD?

$$u^{\pi}(x;\zeta_{e/l}), F_{\pi}(\Delta^2) \longrightarrow H_{\pi}(x,\xi,-\Delta^2;\zeta)$$
 ???

Partial Answer: $\begin{array}{c} & u^{\pi}(x;\zeta_{e/l}) \\ \hline \\ H^{u}_{\pi}(x,\xi,-\Delta^{2};\zeta_{H}) = \\ H^{u}_{\pi}(x,\xi,-\Delta^{2};\zeta_{H}) = \\ \hline \\ H^{u}_{\pi}(x,\xi,-\Delta^{2};\zeta_{H}) \\ \hline \\ H^{u}_{\pi}(x,\xi,-\Delta^{2};\zeta_{H}) \\ \hline \\ \end{pmatrix} \\ \hline \\ Factorised \ LFWF \\ \hline \\ H^{u}_{\pi}(x,\xi,-\Delta^{2};\zeta_{H}) \\ \sim \\ \int_{k_{\perp}} \psi^{*}\psi \\ \hline \\ F_{\pi}(\Delta^{2}) = \\ \int_{0}^{1} dx \ H^{u}_{\pi}(x,0,-\Delta^{2}) \\ \hline \\ \end{array}$

> Question:

From the empirical knowledge of 1-dimensional distributions (EFF and PDF), can we obtain the 3dimensional GPD?

> Answer:

Yes, but so far we are limited to the DGLAP region.

- → Nevertheles...
 - Charge, Mass and spatial distributions are already within the reach of <u>DGLAP</u> GPDs.
 - In this domain, we can also evolve the GPDs to disentangle valence, glue and sea content.
 - Sophisticated covariant extensions to the ERBL domain are known.

JM and Pietro's talks

Pion PDF: Original Data

 \succ Applying this algorithm to the original data yields:

Mean values (of moments) and errors, SH (average) {{0.5, 2.52187×10⁻¹⁷}, {0.331527, 0.00803273}, {0.247615, 0.0110893}, {0.19784, 0.0121977}, {0.165066, 0.0124911}, {0.141928, 0.0124198}, {0.124755, 0.0121811}, {0.111521, 0.0118683}, {0.101021, 0.0115275}, {0.0924926, 0.0111824}, {0.085431, 0.010845}, {0.0794897, 0.0105214}, {0.0744232, 0.0102142}, {0.0700521, 0.00992435}, {0.0662432, 0.00965182}]

Moments from SCI, 🖧

(SCI)

{0.5, 0.332885, 0.249327, 0.199231, 0.165865, 0.142056, 0.124215, 0.11035, 0.0992657, 0.090203, 0.0826552, 0.0762721, 0.0708035, 0.0660661, 0.0619225}

Thus, given the QCD prescription,

$$u^{\pi}(x;\zeta) \stackrel{x \simeq 1}{\sim} (1-x)^{\beta = 2+\gamma(\zeta)}$$

We shall **discard** this for the upcoming construction of the valence quark GPD

- The produced moments are compatible with a symmetric PDF at the hadronic scale.
- ***** But also exhibit agreement with the **SCI results.**

 $q_{\rm SCI}(x;\zeta_H) pprox 1$