Phenomenological viability of the NLHT

José María P. Poyatos

In collaboration with José I. Illana

- New Littlest Higgs model with T-parity (NLHT)
- Constraining the NLHT parameter space
- Conclusions

European Physical Journal Plus 137 (2021) 42 [2103.17078 [hep-ph]] + JHEP 11 (2022), 055 [2209.06195 [hep-ph]]

1. NLHT

Motivation and symmetries

- Little Higgs models: solution to the *little* HP at the TeV scale
 - □ Higgs is the GB of an spontaneously broken global group G at the scale *f*: CCWZ formalism
 - □ Gauge and Yukawa interactions break the global symmetries *collectively:* collective symmetry breaking
 - □ No quadratic divergences to the Higgs mass
 - □ To avoid constrains from EWPD: *T*-parity
- Interesting model: LHT $SU(5) \xrightarrow{\Sigma_0}{f} SO(5)$
- LHT non-gauge invariant in fermionic sector [2103.17078 [hep-ph]]

- Solution: NLHT (minimal gauge invariant extension)
- Global group and SSB:

 $SU(5) \times [SU(2) \times U(1)]^2 \xrightarrow{\Sigma_0, \widehat{\Sigma}_0}_{f} SO(5) \times [SU(2) \times U(1)]$

with $\widehat{\Sigma}_0 = \Sigma_0$

GB parametrized à la CCWZ

$$\Pi = \pi^{a} X^{a}, \quad \{X^{a}\} = 14 \operatorname{SU}(5) \text{ brk. gen.}$$

$$\xi = e^{i \frac{\Pi}{f}} \xrightarrow{G} V \xi U^{\dagger} = U \xi \Sigma_{0} V^{T} \Sigma_{0} \qquad V \in \operatorname{SU}(5)$$

$$\Sigma = \xi \Sigma_{0} \xi^{T} \xrightarrow{G} V \Sigma V^{T} \qquad U \in \operatorname{SO}(5)$$

$$\begin{split} \widehat{\Pi} &= \widehat{\pi}^a \widehat{X}^a, \quad \left\{ \widehat{X}^a \right\} = 4 \left[\mathrm{SU}(2) \times \mathrm{U}(1) \right]^2 \text{ brk. gen.} \\ \widehat{\xi} &= e^{i \frac{\widehat{\Pi}}{f}} \xrightarrow{G} \widehat{V} \widehat{\xi} \widehat{U}^{\dagger} = \widehat{U} \widehat{\xi} \widehat{\Sigma}_0 \widehat{V}^T \Sigma_0 \qquad \widehat{V} \in \left[\mathrm{SU}(2) \times \mathrm{U}(1) \right]^2 \\ \widehat{\Sigma} &= \widehat{\xi} \widehat{\Sigma}_0 \widehat{\xi}^T \xrightarrow{G} \widehat{V} \widehat{\Sigma} \widehat{V}^T \qquad \widehat{U} \in \left[\mathrm{SU}(2) \times \mathrm{U}(1) \right] \end{split}$$

1.NLHTSymmetries• Gauge group and SSB
$$[SU(2) \times U(1)]_1 \times [SU(2) \times U(1)]_2 \frac{\Sigma_0, \hat{\Sigma}_0}{f} SU(2)_L \times U(1)_Y$$
• 8 gauge fields (same as in LHT) (γ, W^{\pm}, Z) massless
 (A_H, W_H^{\pm}, Z_H) massive $\sim f$ • GB: $\Pi : 1_0(\eta) \oplus 2_{\frac{1}{2}}(H) \oplus 3_0(\omega) \oplus 3_1(\Phi)$ $\widehat{\Pi} : 1_0(\widehat{\eta}) \oplus 3_0(\widehat{\omega})$ • A combination of $(\omega^{\pm}, \widehat{\omega^{\pm}}), (\omega^0, \widehat{\omega}^0), (\eta, \widehat{\eta})$
eaten by W_H^{\pm}, Z_H, A_H

$$\mathrm{SU}(2)_L imes \mathrm{U}(1)_Y \xrightarrow[v]{\langle H \rangle}{v} \mathrm{U}(1)_Q$$

 \square π^{\pm}, π^0 eaten by W^{\pm}, Z . Masses $\sim v$. γ massless

• Physical scalar fields

 $\Box \quad h, \phi^{\pm\pm}, \phi^{\pm}, \phi^{0}, \phi^{P} \text{ usual ones}$

- **Remaining comb.** of $(\omega^{\pm}, \widehat{\omega}^{\pm})$, $(\omega^{0}, \widehat{\omega}^{0})$, $(\eta, \widehat{\eta})$
- □ Total: 11 physical scalar fields

Scalar sector: • $\square \text{ Introduce } \Omega \in Z[G_g]$ $\Pi \xrightarrow{\mathrm{T}} -\Omega\Pi\Omega$ $\xi \xrightarrow{T} \Omega \xi^{\dagger} \Omega, \quad \Sigma \xrightarrow{T} \widetilde{\Sigma} = \Omega \Sigma_0 \Sigma^{\dagger} \Sigma_0 \Omega$ $\widehat{\Pi} \xrightarrow{\mathrm{T}} -\widehat{\Pi}$ $\widehat{\xi} \xrightarrow{\mathrm{T}} \widehat{\xi}^{\dagger}, \quad \widehat{\Sigma} \xrightarrow{\mathrm{T}} \Sigma_0 \widehat{\Sigma}^{\dagger} \Sigma_0$ $H \rightarrow$ T-even scalar fields $\eta, \, \omega, \, \Phi, \, \widehat{\eta}, \, \widehat{\omega} \to \text{T-odd scalar fields}$ $\mathcal{L}_{S} = \frac{f^{2}}{8} \operatorname{tr} \left[\left(D^{\mu} \Sigma \right)^{\dagger} D_{\mu} \Sigma \right] + \frac{f^{2}}{8} \operatorname{tr} \left[\left(D^{\mu} \widehat{\Sigma} \right)^{\dagger} D_{\mu} \widehat{\Sigma} \right] \quad \supset$ gauge boson masses

✤ Under T-parity:

$$\Psi_1 \xrightarrow{T} \Omega \Sigma_0 \Psi_2 \quad \Psi_R \xrightarrow{T} \Omega \Psi_R, \quad \widehat{\Psi}_R \xrightarrow{T} - \Omega \widehat{\Psi}_R$$

realization compatible with gauge invariance

 $T-\text{even} \begin{cases} l_{L} = \frac{l_{1L} - l_{2L}}{\sqrt{2}} = (\nu_{L}, \ell_{L})^{T} \\ (\chi_{+})_{L} = \frac{\chi_{1L} + \chi_{2L}}{\sqrt{2}}, \quad (\chi_{+})_{R} \\ (\tilde{l}_{+}^{c})_{L} = \frac{\tilde{l}_{1L}^{c} - \tilde{l}_{2L}^{c}}{\sqrt{2}} = \left((\tilde{\nu}_{+}^{c})_{L}, (\tilde{\ell}_{+}^{c})_{L} \right)^{T} \\ (\tilde{l}_{+}^{c})_{R} = \left((\tilde{\nu}_{+}^{c})_{R}, (\tilde{\ell}_{+}^{c})_{R} \right)^{T} \\ l_{HL} = \frac{l_{1L} + l_{2L}}{\sqrt{2}} = (\nu_{HL}, \ell_{HL})^{T} \\ l_{HR} = (\nu_{HR}, \ell_{HR})^{T} \\ (\chi_{-})_{L} = \frac{\chi_{1L} - \chi_{2L}}{\sqrt{2}}, \quad (\chi_{-})_{R} \\ (\tilde{l}_{-}^{c})_{L} = \frac{\tilde{l}_{1L}^{c} + \tilde{l}_{2L}^{c}}{\sqrt{2}} = \left((\tilde{\nu}_{-}^{c})_{L}, (\tilde{\ell}_{-}^{c})_{L} \right)^{T} \\ (\tilde{l}_{-}^{c})_{R} = \left((\tilde{\nu}_{-}^{c})_{R}, (\tilde{\ell}_{-}^{c})_{R} \right)^{T} \end{cases}$

(similar for quarks) Heavy leptons masses

 \Box l_{H} , (χ_+) and (\tilde{l}^c) get a mass $\sim \kappa f$ from

$$\mathcal{L}_{Y_H} = -\kappa_l f\left(\overline{\Psi}_2 \xi + \overline{\Psi}_1 \Sigma_0 \xi^{\dagger}\right) \Psi_R + \text{h.c.}$$

Remark 1: SU(5) invariant. No κ contributions alone to the Higgs mass

$$\Box$$
 (χ_{-}) and (\tilde{l}_{+}^{c}) get a mass $\sim \hat{\kappa} f$ from

$$\mathcal{L}_{\widehat{Y}_{H}} = -\widehat{\kappa}_{l} f\left(\overline{\Psi}_{2}\widehat{\xi} - \overline{\Psi}_{1}\Sigma_{0}\widehat{\xi}^{\dagger}\right)\widehat{\Psi}_{R} + \text{h.c.}$$
Remark 2: New Yukawa coupling $\widehat{\kappa}$
Remark 3: No Higgs in $\widehat{\xi}$.
No $\widehat{\kappa}$ contributions alone to the Higgs mass

Top quark sector

$$\mathcal{L}_{Y_t} = -i\frac{\lambda_1}{4}f\epsilon_{ijk}\epsilon_{xy}\left[\left(\overline{Q_1^t}\right)_i\Sigma_{jx}\Sigma_{ky} + \left(\overline{Q_2^t}\Sigma_0\Omega\right)_i\widetilde{\Sigma}_{jx}\widetilde{\Sigma}_{ky}\right]t_R - \frac{\lambda_2 f}{\sqrt{2}}\left(\overline{T}_{1L}\widehat{X}T_{1R} + \overline{T}_{2L}\widehat{X}^*T_{2R}\right) + \text{h.c.}, \quad \widehat{X} = \widehat{\Sigma}_{33}^{-1/2}$$

Kinetic term and gauge interactions for fermions

LH fermions

$$\mathcal{L}_{F_L} = i \overline{\Psi}_1 \gamma^\mu D^*_\mu \Psi_1 + i \overline{\Psi}_2 \gamma^\mu D_\mu \Psi_2$$

□ RH fermions (CCWZ)

 $\mathcal{L}_{F_{R}} = i\overline{\Psi}_{R}\gamma^{\mu} \left[\partial_{\mu} + \frac{1}{2}\xi^{\dagger} \left(D_{\mu}\xi \right) + \frac{1}{2}\xi\Sigma_{0}D_{\mu}^{*} \left(\Sigma_{0}\xi^{\dagger} \right) \right] \Psi_{R} \\ \mathcal{L}_{\widehat{F}_{R}} = i\overline{\Psi}_{R}\gamma^{\mu} \left[\partial_{\mu} + \frac{1}{2}\widehat{\xi}^{\dagger} \left(D_{\mu}\widehat{\xi} \right) + \frac{1}{2}\widehat{\xi}\Sigma_{0}D_{\mu}^{*} \left(\Sigma_{0}\widehat{\xi}^{\dagger} \right) \right] \widehat{\Psi}_{R}$

- 1-

1. NLHT

 $\sqrt{2}$

Masses

• Role of T_{κ} on new GB masses

- Allowed λ_1 values
 - \Box Yukawa couplings λ_1 and λ_2 related through m_t

$$\frac{1}{\lambda_1^2} + \frac{1}{\lambda_2^2} = \left(\frac{v}{\sqrt{2}m_t}\right)^2$$

 \Box The T-even (heavier) top partner mass must remain below Λ

$$\frac{M_{T_+}}{f} < \frac{\Lambda}{f}$$

$$\lambda_1 \in [1.05, 1.71], \quad \frac{\Lambda}{f} \in [1.49, 2.32] < 4\pi$$

Parameter space

• EWPD on vector-like quarks: Top partners

□ LHC bounds: Vector-like quarks heavier than 2 TeV

□ On the T-odd (lightest) top quark partner:

 $M_{T_{-}} > 2 \text{ TeV} \Rightarrow f > 0.9 \text{ TeV}$

- Dark matter candidate (WIMP)
 - □ LTP is stable and a DM candidate.
 - **\Box** Light T-odd particles: $\hat{\eta}$ and A_H
 - **\Box** Vector DM less constrained: A_H DM
 - \Box *f* > 0.9 TeV implies $M_{A_H} \gtrsim 200$ GeV and mass hierarchy

 $200 \, \mathrm{GeV} < M_{A_H} < M_{\widehat{\omega}} < M_{\widehat{\eta}}$

Parameter space

• DM relic density: Co-annihilators

□ LHT case:

- ← For $M_{A_H} \gtrsim 150 \text{ GeV co-annihilations needed}$ to reproduce the current DM relic density
- T-odd quarks and leptons share masses nearly mass degenerate with A_H

□ NLHT case:

- ◆ T-odd quarks too heavy due to EWPD ($m \gtrsim 2$ TeV)
- Leptons less constrained: T-odd leptons co-annihilators
- Simplification 1: diagonal and degenerate Yukawas

 Simplification 2: No new GB contributions to coannihilations:

Lighter
$$\widehat{\omega}$$
 $M_{\widehat{\omega}} > M_{A_H} + M_h$
Together with $M_{\widehat{\eta}} < 1$ TeV (natural mass)
lower and upper bounds for T_{κ}

.

٠

Simplified model

Fixing the heavy leptons Yukawa coupling

 \Box *A_H* and T-odd leptons contribute to DM relic density

□ Using micrOMEGAs (freeze-out) and $\Omega h^2 \approx 0.12$ gives the relation

$$m_{\ell_H} \approx 1.16 M_{A_H}$$

$$\Box \text{ Using } m_{\ell_H} = \sqrt{2}\kappa_l f \text{ and } M_{A_H} = \sqrt{\frac{2}{5}}g' f$$

$$\kappa_l \approx 0.185$$

EWPD on vector-like quarks: rest of heavy quarks

□ LHC bounds on VL quarks m > 2 TeV

\Box Lower bound on κ_q :

Simplified model

 $M_{\widehat{\omega}} \in [600, 800] \text{ GeV}$ $M_{\widehat{\eta}} \in [800, 1000] \text{ GeV}$

2. Pheno Simplified model

Typical spectrum for f = 2.7 TeV and $\lambda_1 = 1.2$

Conclusions

- Little Higgs models offer a solution to the HP at the TeV scale
- The LHT SU(5)/SO(5) is not gauge invariant in the fermionic sector
- We construct a New and gauge invariant LHT (NLHT) enlarging minimally the global symmetry group to

$$SU(5) \times [SU(2) \times U(1)]^2 \xrightarrow{\Sigma_0, \widehat{\Sigma}_0}_{f} SO(5) \times [SU(2) \times U(1)]$$

The gauge group is $[SU(2) \times U(1)]^2 \xrightarrow{\Sigma_0, \widehat{\Sigma}_0}_{f} SU(2)_L \times U(1)_Y$ (same as in LHT)

□ New particles

٠

- 4 extra light T-odd scalar fields: singlet and real triplet
- Extra (χ_{-}) and (\tilde{l}_{+}^{c}) with masses $\sim \hat{\kappa} f$

- Assuming:
 - □ No mass exceeds the cutoff scale
 - □ Current lower bounds on VL quarks
 - □ Simplified model with mass degenerate heavy fermions compatible with the usual A_H as DM
- We found:
 - $\Box \quad f \in [2,3] \text{ TeV}$
 - \Box Yukawa couplings κ_q and λ_1 get correlated
 - **\Box** Yukawa coupling κ_l fixed
 - □ Particle spectrum bounded from above and below
- The NLHT is viable

THANKS FOR YOUR ATTENTION

C. New scalar fields lifetime and production

JHEP 11 (2022), 055.

- $\hat{\omega}$ and $\hat{\eta}$ decay into LH SM lepton and a RH T-odd mirror lepton
- Width and lifetime comparable with that of the Higgs

- Production:
 - □ Pair produced with a T-odd heavy particle
 - □ Produced by EW interaction

- Not sizeable production rates

B. Higgs mass in the LHT

Gauge and top sector contributions are understood

$$\mu^{2} = \frac{f^{2}}{16\pi^{2}} \log \Lambda^{2} \left(6g^{4} + \frac{2}{5}g'^{4} - 3\lambda_{1}^{2}\lambda_{2}^{2} \right)$$

• Heavy fermion sector break the global SU(5)

$$\mathcal{L}_{Y_{H}}^{(a)} = -\kappa_{l} f\left(\overline{\Psi}_{2}\xi + \overline{\Psi}_{1}\Sigma_{0}\xi^{\dagger}\right)\Psi_{R} + \text{h.c.}$$
$$\mathcal{L}_{Y_{H}}^{(b)} = -\kappa_{l} f\left(\overline{\Psi}_{2}\xi + \overline{\Psi}_{1}\Sigma_{0}\Omega\xi^{\dagger}\Omega\right)\Psi_{R} + \text{h.c.}$$

Contributions proportional to κ_l ?

D. Top sector in the LHT
• Top quark sector
$$\rightarrow$$
 CSB \rightarrow top partners
• Fields
 $Q_{1}^{t} = \begin{pmatrix} -ic^{2}T_{1L} \\ 0 \\ 0 \\ 2 \end{pmatrix}$, $Q_{2}^{t} = \begin{pmatrix} 0 \\ 0 \\ -ic^{2}T_{2L} \\ -ic^{2}T_{2L} \end{pmatrix}$, \mathcal{I}_{1R} , \mathcal{I}_{2B}
• Transformation properties
 $Q_{1}^{t} \stackrel{C}{\hookrightarrow} V^{*}Q_{1}^{t}$, $Q_{2}^{t} \stackrel{C}{\hookrightarrow} VQ_{2}^{t}$, $Q_{1}^{t} \stackrel{T}{\to} \Omega \Sigma_{0}Q_{2}^{t}$, $T_{1R} \stackrel{T}{\to} T_{2R}$
 $I = \operatorname{Transformation properties}$
 $Q_{1}^{t} \stackrel{C}{\hookrightarrow} V^{*}Q_{1}^{t}$, $Q_{2}^{t} \stackrel{C}{\hookrightarrow} VQ_{2}^{t}$, $Q_{1}^{t} \stackrel{T}{\to} \Omega \Sigma_{0}Q_{2}^{t}$, $T_{1R} \stackrel{T}{\to} T_{2R}$
 $I = \operatorname{Transformation} \operatorname{Properties}$
 $I = \operatorname{Transformation} \operatorname{Properies}$
 I

E. Higgs mass dependence on T_{κ} in NLHT

European Physical Journal Plus 137 (2021) 42

 $\square \mathcal{L}_{Y_H} SU(5)$ invariant \rightarrow no κ contribution to m_h

$$\mathcal{L}_{Y_H} = -\kappa_l f\left(\overline{\Psi}_2 \xi + \overline{\Psi}_1 \Sigma_0 \xi^{\dagger}\right) \Psi_R + \text{h.c.}$$

 $\Box \ \mathcal{L}_{\widehat{Y}_{H}}$ no Higgs couplings \rightarrow no $\widehat{\kappa}$ contribution to m_{h}

$$\mathcal{L}_{\widehat{Y}_{H}} = -\widehat{\kappa}_{l} f\left(\overline{\Psi}_{2}\widehat{\xi} - \overline{\Psi}_{1}\Sigma_{0}\widehat{\xi}^{\dagger}\right)\widehat{\Psi}_{R} + \text{h.c.}$$

Sectors communicate through Ψ_1 , $\Psi_2 \longrightarrow CSB \longrightarrow m_h^2 \sim \kappa^2 \hat{\kappa}^2 \log \Lambda^2$

3. NLHT

3.1 NLHT setup

• Fermion masses and mixings (new features)

Charged leptons (similar for down-type quarks)	ב	ar for down-type quark	Charged leptons	quarks):
--	---	------------------------	-----------------	----------

Fie	eld	Mass
$\ell_L o V_L^\ell \ell_L$,	$\ell_R o V_R^\ell \ell_R$	$rac{\lambda_l v}{\sqrt{2}} = V_L^\ell m_\ell V_R^{\ell \dagger}$
$\ell_{HL} o V_L^{l_H} \ell_{HL},$	$\ell_{HR} \to V_R^{l_H} \ell_{HR}$	$\sqrt{2}\kappa_l f = V_L^{l_H} m_{\ell_H} V_R^{l_H \dagger}$
$(\widetilde{\ell}^{c}_{-})_{L} \to V^{l_{H}}_{L}(\widetilde{\ell}^{c}_{-})_{L},$	$(\widetilde{\ell}^{c}_{-})_{R} \to V^{l_{H}}_{R}(\widetilde{\ell}^{c}_{-})_{R}$	$\sqrt{2}\kappa_l f = V_L^{l_H} m_{\ell_H} V_R^{l_H \dagger}$
$(\widetilde{\ell}^{c}_{+})_{L} \to V_{L}^{\widetilde{l}^{c}_{+}}(\widetilde{\ell}^{c}_{+})_{L},$	$(\widetilde{\ell}^c_+)_R \to V_R^{\widetilde{\ell}^c_+}(\widetilde{\ell}^c_+)_R$	$\sqrt{2}\widehat{\kappa}_l f = V_L^{\widetilde{l}_+^c} m_{\widetilde{l}_+^c} V_R^{\widetilde{l}_+^c \dagger}$

□ Neutral leptons at LO (similar for up-type quarks)

Field	Mass
$ u_L ightarrow V_L^\ell \ell_L$	0
$ u_{HL} ightarrow V_L^{l_H} u_{HL}, u_{HR} ightarrow V_{LR}$	$V_R^{l_H} \nu_{HR} \qquad \qquad \sqrt{2}\kappa_l f = V_L^{l_H} m_{\ell_H} V_R^{l_H \dagger}$
$(\widetilde{\nu}_{-}^{c})_{L} \to V_{L}^{l_{H}}(\widetilde{\nu}_{-}^{c})_{L}, (\widetilde{\nu}_{-}^{c})_{R} \to$	$V_{R_{\perp}}^{l_{H}}(\widetilde{\nu}_{\perp}^{c})_{R} \sqrt{2}\kappa_{l}f = V_{L}^{l_{H}}m_{\ell_{H}}V_{R}^{l_{H}\dagger}$
$(\chi_+)_L ightarrow V_{L_+}^{l_H}(\chi_+)_L$, $(\chi_+)_R$ –	$\rightarrow V_R^{l_H}(\chi_+)_R \mid \sqrt{2}\kappa_l f = V_L^{l_H} m_{\ell_H} V_R^{l_H^+}$
$(\chi_{-})_{L} o V_{L}^{\widetilde{l}^{c}_{+}}(\chi_{-})_{L}, (\chi_{-})_{R} o V_{L}^{\widetilde{l}^{c}_{+}}(\chi_{-})_{L},$	$\Rightarrow V_R^{\widetilde{l}_+^c}(\chi)_R \left \sqrt{2}\widehat{\kappa}_l f = V_L^{\widetilde{l}_+^c} m_{\widetilde{l}_+^c} V_R^{\widetilde{l}_+^c \dagger} \right $
$(\widetilde{\nu}^c_+)_L \to V_L^{\widetilde{l}^c_+}(\widetilde{\ell}^c_+)_L, (\widetilde{\nu}^c_+)_R -$	$\rightarrow V_R^{\widetilde{l}_+^c}(\widetilde{\nu}_+^c)_R \left \sqrt{2}\widehat{\kappa}_l f = V_L^{\widetilde{l}_+^c} m_{\widetilde{l}_+^c} V_R^{\widetilde{l}_+^c \dagger} \right $

□ Misalignment matrices

Between
$$\kappa_l$$
 and λ_l : usual one
 $V = V_L^{l_H \dagger} V_L^{\ell}$

Between
$$\kappa_l$$
 and $\hat{\kappa}_l$: new one
 $\widehat{W} = V_L^{\widetilde{l}_+^c \dagger} V_L^{l_H}$

Old ones:

$$W = \widetilde{V}_L^{\dagger} V_L^{l_H} = \mathbb{1}$$

 $Z = V_R^{\chi^{\dagger}} V_R^{l_H} = \mathbb{1}$

European Physical Journal Plus 137 (2021) 42