LHC

LHC Overview

- The Large Hadron Collider (LHC) is the leading accelerator in the world
- Capable of accelerating protons and heavy ions
 - Proton beams at 6.8 TeV
 - Lead ion beams at 522 TeV (2.3 TeV per nucleon)
- 17 mile (27 km) long synchrotron
 - Up to 574 ft (170 m) underground
 - Tilted at a 14 mrad angle due to geological conditions
 - Built in pre-existing LEP tunnel
- Located underneath Switzerland and France
- Hadron beams circulate in opposite directions
- Collisions occur at 4 interaction points

LHC magnets

- Complex system of magnets used to steer and control beams
- 1232 main dipoles keep beam along ring
 - Superconducting magnets generate a field strength of 8.3 T
 - \circ 15 m long and weighs 15 tons
- Sextupole, octupole and decapole magnets help to maintain beam integrity
- Sets of quadrupole magnets guide beams to collision points
 - \circ Compress beams to increase proton density (0.2 mm diameter to 20 μm)
 - \circ ~ Precisely steer beams into interaction point volume (20 μm x 20 μm x 8 cm)

Relative beam sizes around IP1 (Atlas) in collision

Accelerating protons

- Protons are sourced from Hydrogen gas
 - Electrons are stripped, leaving protons
- Initially accelerated using a linac
- Passed through a series of synchrotrons
 - Increasing energy at each stage
 - Previous colliders make up acceleration chain
- Heavy ion acceleration is similar

The CERN accelerator complex Complexe des accélérateurs du CERN

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive EXperiment/High Intensity and Energy ISOLDE // MEDICIS // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform

LHC proton beams

- LHC collisions occur in "fills"
 - Number of protons decreases throughout a fill
 - A fill lasts several hours until the beam is dumped and a new fill is started
- Each beam consists of 2835 "bunches" of protons
 - Each bunch begins with $\sim 10^{11}$ protons
 - \circ Each interaction point has one bunch crossing every 25 ns
 - Most protons in a bunch pass without interacting, but a few interact at each crossing
- 600 million collisions per second
- Protons lost continually lost during run

https://op-webtools.web.cern.ch/vistar/vistars.php

Best laid plans

- Originally planned to start running at 14 TeV in 2005
- Budgetary constraints and technical delays pushed start date to 2008
- Initial testing led to quenching and severe damage
- Operations began in 2009 at 2.36 TeV
- Data collected in 2010-211 at 7 TeV
- Currently producing collisions at 13.6 TeV

LHC Run Schedule

LHC / HL-LHC Plan

Luminosity

Closer look at hadron collisions

- Hadron collisions are much more complex than lepton collisions
- Two partons can interact in a "hard scatter" event
 - Occurs at a primary vertex (PV)
- Initial state radiation and final state radiation
 - Typically gluon radiation but can also be photons
- Multiple parton interaction (MPI) hard scatter event can happen
- Remaining partons can scatter elastically into detector

Pileup

- Proton bunch crossings have multiple collisions
 - Referred to as in-time pileup
- Quantified using number of primary interaction vertices (N_{PV}) and average number of interaction per bunch crossing (<µ>)
- Out-of-time pileup also occurs
 - Primarily due to collisions in preceding or subsequent bunch crossings
 - Additional effects from collisions with beam collimators and stray gas molecules
 - Detector latency (read-out time) is generally longer than 25 ns, so additional interactions in that time can result in overlapping detector signals
- Many techniques used to mitigate effects of pileup
 - Precise tracking to associate reconstructed particles to interaction vertices
 - Other techniques to disentangle pileup calorimeter energy deposits

ATLAS event displays

- Collisions (events) are highly complex
- Can be fully described only as non-human-readable data
- Event displays visually depict reconstructed particles in a collision

view

Perspective and transparency optimized for each event

Pileup - 2 vertices

Pileup - 25 vertices

Pileup - 2, 50, 140 vertices

Pileup profiles

Main LHC Experiments

ALICE

LHCb

ATLAS

ALICE

- A Large Ion Collider Experiment
- Specialized for Pb-Pb collisions
 - Also uses p-Pb collisions
- Goals are to improve understanding of QCD
 - Quark-gluon plasma
 - State of matter in which free color charges exist
 - Quark deconfinement
 - Existence of quarks outside of bound states
- Many discoveries including new tetraquarks and pentaquarks

LHCb

- Large Hadron Collider beauty experiment
- Focused on studying properties of B-hadrons
 - Hadrons containing a b quark
- Numerous measurement goals
 - B-hadron branching ratios
 - Asymmetries in flavor-changing neutral currents
 - CP violation in B-hadron decays
 - Could explain matter/anti-matter asymmetry
 - Other B-hadron decays

ATLAS and CMS

- A Toroidal LHC ApparatuS and Compact Muon Solenoid
- General purpose experiments
- Designed to search for generic particle discovery and measurements
- Similar designs and physics goals
- Primarily focused on pp collisions, but also make use of heavy ion collisions
- Friendly competition for discoveries
 - Simultaneous observation of the Higgs boson
 - Agreement to inform each other of major discoveries in advance of public announcement
 - Harmonization of some techniques to enable comparisons and combinations
- More details next week

Other LHC experiments

- LHCf
 - Measurement of particles traveling close to beamline

• MATHUSLA and FASER

- Search for long-lived particles and neutrinos
- Recent detection of neutrinos
- MilliQan
 - Search for milli-charged particles
- MOEDAL
 - Search for magnetic monopoles and other exotic particles
- TOTEM
 - Total cross-section measurements

Future Circular Collider

- Ongoing work towards the Future Circular Collider (FCC) at CERN
- 90-100 km long
 - Limited by geography
- ~100 TeV collision energy
- LHC will be in acceleration chain
- At least 30 years expected for design and construction

