
ROOT Part 3



Recap

● ROOT files (*.root) can hold any type of ROOT object

● A TTree stores information in a set of branches for every entry
○ Able to easily browse and draw information in a TTree

● TBrowser allows browsing files and drawing histograms and branches

● C++ ROOT macros can be used to perform complex ROOT analyses
○ Interpreted using CLING

● TLorentzVector provides methods for relativistic calculations



Detector Coordinates

https://atlas.cern/Discover/Detector https://tikz.net/axis3d_cms/

https://atlas.cern/Discover/Detector
https://tikz.net/axis3d_cms/


Angular distances

● 4-vectors are defined with η and φ angular directions

● Distances in detector space are defined as angular difference
○ Consistently defined at any radius from the interaction point

ΔR = ((Δη)2 + (Δφ)2)1/2

● TLorentzVector provides DeltaR() and DeltaPhi() methods

TLV1.DeltaR(TLV2)

● Note: for distance calculations, Δφ must be [-π,π]
○ By-hand calculations often fall outside of this range and need to be adjusted



Save objects to output ROOT file

● ROOT objects need to be added to files explicitly

● Create a new output file:

TFile *outFile = new TFile("output.root","RECREATE");

● The TObject Write() function saves object to current directory

● Latest directory (or file) to be used is the current directory

● It is useful to call file->cd() before calling Write()

● If writing same object to file multiple times, multiple snapshots are saved



Create and save an output TTree

● Storing information in a TTree is useful for later analysis
○ Generally useful when simplifying information for quickly repeatable analysis

■ Significantly reduce amount of information and number of events once and then 
analyze remaining information multiple times

● Declare new branches with Branch() and populate tree with Fill()

float dRHH;
outTree->Branch("dRHH", &b_dRHH);
for(...) {

dRHH = H1.DeltaR(H2);
outTree->Fill();

}
outTree->Write();



Setting object directory

● The directory where a TObject lives can be modified using SetDirectory()

● Argument is generally a TFile to assign object to the file

● SetDirectory(0) disconnects the object from any file
○ Very useful for retrieving objects from a file and then closing the file



TString

● ROOT provides its own implementation of strings: TString

● TString provides all of the functionality of std::string and more

● Some useful methods:
○ Append() and Prepend()

○ Insert()

○ Replace()

○ Length()

○ First()

● Data() returns a char array - often necessary when passing as an argument

https://root.cern.ch/doc/master/classTString.html


Histogram errors

● Histograms can hold statistical errors
○ Defined as entry weights added in quadrature

● Use Sumw2() to create structure to hold errors
○ Needs to be called before entries are added

● Error bars are drawn by default

● Draw just the bin contents with:

myHist->Draw("HIST");



Histogram scaling

● Uniformly change the integral of a histogram with Scale()

myHist->Scale(3); // multiply by 3

● Scaling preserves the shape of a histogram

● Scale histograms to have integral = 1 to compare shape of distributions
○ Commonly done when comparing signal and background to choose selection cuts

myHist->Scale(1 / myHist->Integral());



Multi-histogram operations

● Numerous ways to interact with multiple histograms simultaneously

● Add two histograms with scale factors:

h1.Add(h2,3); // add 3*h2 to h1

h1.Add(h2,1.3,h3,7); // set h1 to be 1.3*h2 + 7*h3

● Take the ratio of two histograms:

h1.Divide(h2);

● Overlay histograms on the same canvas:

h2->Draw("same");

● Stack histograms using THStack

https://root.cern.ch/doc/master/classTHStack.html


pyROOT

● ROOT provides python bindings

● Check supported version of python with root-config --python-version

● Commands are intuitive python implementations of C++ methods

import ROOT
h = ROOT.TH1F("myHist", "myTitle", 64, -4, 4)
h.FillRandom("gaus")
h.Integral()

● More details available here: https://root.cern/manual/python/

https://root.cern/manual/python/


ROOT Documentation
● Extensive documentation available on ROOT website

○ https://root.cern/manual/basics/ - good starting point

○ https://root.cern/doc/master/ - provides all class definitions

○ https://root.cern/doc/master/group__Tutorials.html - good tutorials

○ https://root-forum.cern.ch/ - ask questions to experts (or find existing questions)

● ROOT naming conventions:
○ Class/namespace and member functions are in UpperCamelCase (a.k.a. PascalCase)

○ Most classes/namespaces begin with T

○ Non-class types end in _t

● When using Google, begin search with “CERN ROOT”
○ ROOT refers to the top level directory in a file system or the name of an admin account

https://root.cern/manual/basics/
https://root.cern/doc/master/
https://root.cern/doc/master/group__Tutorials.html
https://root-forum.cern.ch/

