
ROOT Part 2

Recap

● ROOT is a commonly used set of libraries for HEP

● Extensive documentation available online

● ROOT useful as a calculator, with many TMath function available

● Huge number of ROOT classes available

● TF1 class used for 1D functions

● TH1* classes used for 1D histograms

● Information drawn to TCanvas objects to create plots

ROOT Files

● ROOT files (*.root) can hold any type of ROOT objects

● Most commonly used to hold histograms and trees
○ .root files holding only a tree are often referred to as ntuples

● Open a .root file as a TFile using: root myfile.root

● From within ROOT, open with:

TFile *f = new TFile("myfile.root","<mode>")
○ <mode> can be NEW or CREATE, RECREATE, UPDATE, READ (default is READ)

● Check if file opened correctly using IsZombie()

● List contents of open file with: .ls

● Close a TFile using Close()

https://root.cern.ch/doc/master/classTFile.html
https://root.cern.ch/doc/master/classTFile.html#ad0377adf2f3d88da1a1f77256a140d60

Trees and branches

● A tree (TTree) is a list of independent columns (called branches) of data
○ Branches are represented by the TBranch class

● Trees are access by entries (rows of data)
○ Often representing each event (LHC collision), but can be divided in other ways

● Each branch holds information for every entry
○ Default branch values are often used in case data is missing for an entry

● Branches can hold primitive types, vectors, strings, or more complex types

● Buffers for reading/writing branch information are used behind the scenes
○ High performance work can involve optimizing buffers

https://root.cern.ch/doc/master/classTTree.html
https://root.cern.ch/doc/master/classTBranch.html

TTree Print

● Explore the branches in a TTree using Print()

● Use string argument with wildcards (*) to see subset

TTree Scan

● Print example values from TTree using Scan()

● Useful when trying to quickly understand what a TTree holds
○ Does not print out all branches by default

○ Use "var1:var2:var3" string as an argument to print var1, var2 and var3 branches

TTree Draw
● Quickly draw the contents of a branch using Draw()

tree->Draw("branch")
○ If branch is a vector, all entries in the vector will be drawn by default

● Add selection criteria with a second string argument
tree->Draw("branch","branch > 3 && branch < 10")

● Simple branch manipulations can be done
tree->Draw("branch1+branch2")

● Output can be piped into a histogram for later use
tree->Draw("branch>>h1")

● More advanced logic is possible in draw commands

TBrowser

● TBrowser GUI makes exploring ROOT files easier

new TBrowser or TBrowser t
○ Tab autocomplete is useful for being lazy

● New version of ROOT have a faster web-based browser
○ Use old version by opening root with --web=off

● TBrowser interface can be used to modify what is drawn and save to image

● Often painfully slow when working on a remote machine

● Not designed to get reproducible canvases

ROOT Macros

● C++ macros (*.C files) can be used to call available ROOT functions

● Main function needs to have the same name as macro

● Header files for used classes do need to be included if using CLING

mymacro.C:

void myMacro() {
TH1F *h1 = new TH1F("h1","h1",20,0,10);
h1->Fill(6.7);
std::cout << h1->Integral() << std::endl;
return;

}

Running ROOT Macros

● Macros can be called through the CLING interpreter or compiled
○ CLING interprets C++ similar to the way python is interpreted

● Within root, execute a macro using:

.x mymacro.C

● Or call using (for CLING interpreter):

root mymacro.C

● Or with (to compile the code):

root mymacro.C+

Opening TFile and getting objects

TFile *f = new TFile("file.root","READ");

● Retrieve objects saved in TFile using Get()
○ Get() returns a TObject, so it needs to be explicitly cast into the correct class

TTree *tree = (TTree*)f->Get("atree")

● Object is linked to original TFile, so do not close TFile while using object

● Make a clone of an object using Clone() (be sure to cast)

TTree *mytree = (TTree*)tree->Clone("mytree")

Access TTree

● Local variables need to be declared and linked to branches in TTree

int m_var1;

std::vector<float> *m_var2 = nullptr;

tree->SetBranchAddress("var1",&m_var1);

tree->SetBranchAddress("var2",&m_var2);

● Useful, but not necessary to use the same name for variable and branch

● When each entry is retrieved, the local variables store the branch data

Loop over TTree

● Usually you will want to define procedure for each TTree entry

● Get the number of entries in the TTree:

Long64_t nEntries = tree->GetEntries();

● Iterate over entries with a for loop and use GetEntry() to access each entry:

for (Long64_t i = 0; i < nEntries; i++) {

tree->GetEntry(i);

// put other per-entry code here

}

● GetEntry() assigns current branch value to each linked variable

Detector Coordinates

https://atlas.cern/Discover/Detector https://tikz.net/axis3d_cms/

https://atlas.cern/Discover/Detector
https://tikz.net/axis3d_cms/

TLorentzVector

● Relativistic calculations are central to ROOT functionality

● 4-vectors are defined with 4 components:
○ px, py, pz, E

○ px, py, pz, m

○ pT, eta, phi, E

○ pT, eta, phi, m

● TLorentzVector class is used for 4-vector manipulation
○ Define 4-vectors

○ Add, subtract, transform

○ Retrieve 4-vector components

https://root.cern.ch/doc/master/classTLorentzVector.html

TLorentzVector II

● Define a TLorentzVector using:

TLorentzVector myTLV;

myTLV.SetPtEtaPhiM(pt,eta,phi,m);

myTLV.SetPtEtaPhiE(pt,eta,phi,E); // alternative

● Set individual components using SetE(), SetM(), SetEta(), etc.

● Access individual components using:
○ Pt() or Perp() to get transverse momentum

○ M() to get mass

○ Phi() to get azimuthal angle

○ Eta() to get the pseudorapidity

TLorentzVector III

● Two or more TLorentzVectors can be added together to create a new TLV

TLorentzVector sumTLV = TLV1 + TLV2;

TLorentzVector diffTLV = TLV1 - TLV2;

● Note that individual components do not sum together directly

TLV1.M() + TLV2.M() // sum of two masses

is not equal to

(TLV1 + TLV2).M() // invariant mass

● Use Boost(), Rotate(), and Transform() to modify TLV in well-defined ways
○ Beyond the scope of this class

Save objects to output ROOT file

● ROOT objects need to be added to files explicitly

● The TObject Write() function saves object to current directory

● Latest directory (or file) to be used is the current directory

● Best practice is to call file->cd() before calling Write()

● If writing same object to file multiple times, multiple snapshots are saved

DiHiggs signal

● Many Beyond the Standard Model (BSM) theories predict heavy particles

● One possibility is a new scalar (X) that decays into two Higgs bosons (H)

● Look at events where one H decays to bb and the other decays to ττ

ROOT Documentation
● Extensive documentation available on ROOT website

○ https://root.cern/manual/basics/ - good starting point

○ https://root.cern/doc/master/ - provides all class definitions

○ https://root.cern/doc/master/group__Tutorials.html - good tutorials

○ https://root-forum.cern.ch/ - ask questions to experts (or find existing questions)

● ROOT naming conventions:
○ Class/namespace and member functions are in UpperCamelCase (a.k.a. PascalCase)

○ Most classes/namespaces begin with T

○ Non-class types end in _t

● When using Google, begin search with “CERN ROOT”
○ ROOT refers to the top level directory in a file system or the name of an admin account

https://root.cern/manual/basics/
https://root.cern/doc/master/
https://root.cern/doc/master/group__Tutorials.html
https://root-forum.cern.ch/

