
ROOT Part 1



What is ROOT

● https://root.cern

● ROOT is a set of libraries optimized for HEP research

● Developed and maintained at CERN
○ Written in C++ with interfaces to Python and R available

○ Successor to previous FORTRAN-based CERN Program Library

● Wide range of features such as simple calculation, relativistic calculations, 
histogramming, graphing, functional fitting, columnar analysis and efficient 
data storage/access

● Industry standard for HEP
○ Some movement towards using other tools such as uproot and numpy

https://root.cern/
https://uproot.readthedocs.io/en/latest/index.html
https://numpy.org/


Installing ROOT
● Installing ROOT is quite simple

○ A few years ago, it required building the binaries yourself

● Recommend using version 6.24.X or newer
○ New versions occasionally break backwards compatibility

● https://root.cern/install/
○ Pre-compiled binary available for Linux, MacOS and Windows (beta version)

○ Available through package managers

○ Check dependencies before installation

● Source thisroot.sh(.bat) to set environment variables

● Already available on lxplus

https://root.cern/install/
https://root.cern/install/dependencies/


Launching ROOT

● Launch using root
○ Options can be passed using -

■ -l: suppress splash screen (-a to enable it now)

■ -b: batch mode (prevents pop ups)

■ -q: quit ROOT at the end of executing command (generally when running a macro)

○ Splash screen has been turned off by default since 6.20

● Arguments can be passed, usually used to run macros or open files

● Display a list of ROOT commands with .help or .? (don’t forget period)

● Exit ROOT session with .q



ROOT on lxplus

● ROOT is installed and set up by default on lxplus
○ Can run immediately upon login

● Opening X11 windows can be very slow
○ Add “X11.UseXft: no” to ~/.rootrc to speed it up a bit

● To set up a specific version of ROOT:
export ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase

alias setupATLAS='source ${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh'

setupATLAS

lsetup "root 6.28.00-x86_64-centos7-gcc11-opt" (as an example version)



VSCode ROOT extension

● VSCode has a useful extension to view ROOT files

● ROOT File Viewer by Alberto Péraz de Rada Fiol

● Generally faster than integrated ROOT browser
○ Somewhat limited functionality, but great for quickly viewing files



ROOT Documentation
● Extensive documentation available on ROOT website

○ https://root.cern/manual/basics/ - good starting point

○ https://root.cern/doc/master/ - provides all class definitions

○ https://root.cern/doc/master/group__Tutorials.html - good tutorials

○ https://root-forum.cern.ch/ - ask questions to experts (or find existing questions)

● ROOT naming conventions:
○ Class/namespace and member functions are in UpperCamelCase (a.k.a. PascalCase)

○ Most classes/namespaces begin with T

○ Non-class types end in _t

● When using Google, begin search with “CERN ROOT”
○ ROOT refers to the top level directory in a file system or the name of an admin account

https://root.cern/manual/basics/
https://root.cern/doc/master/
https://root.cern/doc/master/group__Tutorials.html
https://root-forum.cern.ch/


ROOT Calculations

● ROOT can be used as a simple calculator
○ The result of any math command is printed to the screen

● Variables can be declared, assigned and used
○ Variable type is implicit but can be done explicitly

● Can use cmath or TMath functions

● TMath namespace provides huge number of mathematical methods
○ https://root.cern/doc/master/namespaceTMath.html

○ Call using e.g., TMath::Sqrt(7)

https://root.cern/doc/master/namespaceTMath.html


ROOT Objects

● ROOT has classes for many different types of objects
○ Thorough system of inheritance - well documented

● Most classes do not have implicit (default) constructors

● Declare objects as pointers and call constructor with new
○ Be sure to delete your pointers when you are done

● Most classes inherit from TObject and TNamed
○ Have name and title string attributes

○ name is a unique identifier that ROOT uses to retrieve objects from memory

■ Multiple instances of the same name can lead to unexpected results

○ title should be descriptive but doesn’t need to be unique



TF1 Class

● 1D functions use the TF1 class
○ https://root.cern/doc/master/classTF1.html

● Initialize with name and function expression
○ Optional arguments for the range of x

● Function can use cmath, TMath or user-defined functions

TF1 *f1 = new TF1("f1","sin(x)",0,10);
TF1 *f2 = new TF1("f2","TMath::Cos(x)",0,10)
Double_t myFunc(double x) {return x+sin(x);}
TF1 *f3 = new TF1("f3","myFunc(x)",0,10)

https://root.cern/doc/master/classTF1.html


TCanvas and Drawing
● Many ROOT classes allow you to draw plots

○ Histograms, functions, graphs, etc.

● Plots are drawn on a TCanvas object
○ If no canvas is active, a default canvas is created

○ Use constructor to define size or just use default values

○ Change active canvas with cd() command: c1->cd()

● Use the Draw() command to draw to the active canvas
○ Use "same" as an argument to draw multiple things to the same canvas

○ Drawing captures a snapshot of the plot and canvas is not updated automatically

● Save TCanvas using SaveAs(“<filename>”) method
○ Most image formats supported



Histograms Overview

● A histogram is a binned representation of data
○ Histograms defined by bin edges

○ Each entry is placed in the bin with the corresponding range

○ Entries can be added with different weights

● ROOT offers 1, 2 and 3 dimensional histograms

● Different classes are available to be optimized for different types of data
○ TH1F, TH1S, TH2I, TH3D, etc

● Note that in ROOT, histogram bin numbers are indexed from 1!!!



TH1

 TH1F *h1 = new TH1F("h1","h1",20,0,10);

h1->Fill(6.2);

h1->Fill(3.4,0.7);

h1->Draw();

h1->GetEntries();

h1->Integral();

h1->GetBinContent(4);

h1->FillRandom("gaus",1000);



ROOT Macros

● C++ macros (*.C files) can be used to call available ROOT functions

● Main function needs to have the same name as macro

● Header files for used classes need to be explicitly included

mymacro.C:

#include <TH1F.h>
void myMacro() {

TH1F *h1 = new TH1F("h1","h1",20,0,10);
h1->Fill(6.7);
return;

}



Running ROOT Macros

● Macros can be called through the CLING interpreter or compiled
○ CLING interprets C++ similar to the way python is interpreted

● Within root, execute a macro using:

.x mymacro.C

● Or call using (for CLING interpreter):

root mymacro.C

● Or with (to compile the code):

root mymacro.C+


