
Python Part 1

Python vs C++

● Python is a popular alternative/complement to C++

● Simpler syntax resulting in shorter and simpler code

● Interpreted language - slower than compiled C++
○ Available via interactive interpreter and *.py files

● Automatic variable declarations and memory management

● Very useful to be familiar with both

Installing and running python

● Python usually needs to be installed manually

○ Windows: can be installed using Microsoft Store

○ Linux: often already installed or available through package manager

○ Direct download: https://www.python.org/downloads/

● Generally you will want the latest version

○ Make sure you have at least version 3.6 for this class

● Run using python command

○ Often py (for Windows) or python3 are used

● Recommend Python extension in VSCode

https://www.python.org/downloads/

Python versions

● Python versions are often not mutually compatible

○ Significant break between python 2 and python 3

○ Generally, python 3 is considered the default now, but python 2 is sometimes needed

● Check which version you are running with python --version

● Versions of individual packages are also often incompatible

○ It is often necessary to carefully set up your work environment to run complex code

● Virtual environments are often used to ensure versions are all correct

○ Beyond the scope of this class

Python interpreter

● Run python without a *.py file to enter the interactive interpreter
○ You will be prompted with >>>

● Python commands can be entered directly line-by-line
○ Very useful for simple procedures, but not great for complex code

● Quit interpreter using exit()

Basic python syntax

● No line terminators except when defining scope

● Scopes are defined by a line ending with colon (:)

○ All lines within scope must be indented (at least one space)

○ Nested scopes done with multiple levels of indentation

○ Be careful to ensure scoping is as expected

● Single line comments are denoted with #

● Block comments denoted as """ … """ or ''' … '''

● Arguments are defined with (…)

Packages

● Included functionality is rather limited, but extensive packages are available

● Many standard packages already come installed, e.g.,:

○ math: same mathematical functions as cmath in C++ (python cmath is for complex numbers)

○ os: interfaces to OS functionality (e.g., bash functionality from within python)

○ time: access to current time

● Include packages using import command

○ Can provide local name to save on typing

import math
import calendar as cal

math.sqrt(4)
cal.weekday(2023,2,28)

https://docs.python.org/3/library/

Installing packages

● There are many other available packages: https://pypi.org/

● For almost everything you want to do, there is a package with the functionality

○ If you are writing a complex algorithm, it likely already exists

● Install packages using pip (already available for 3.6 or newer):

○ pip install <package> - install a package

○ pip list - list installed packages with version information

○ pip install <package>=x.y.z - install version x.y.z of a package

○ pip install --upgrade <package> - update installed package to latest version

○ pip uninstall <package> - uninstall a package

https://pypi.org/

Variables
● Variables do not need to be declared

○ Variable created and type assigned when value is first assigned

○ Types can change after they have been set

● Variable types can be cast using e.g., str(...), int(...) and float(...)

● Check the type of a variable with type(...)

x = 7
y = "Some text"

Input and output

● Print to screen using print() command

● Read in user input using input(<prompt>) command

text = input("Please enter text: ")
print("Your text is: " + text)

Mathematical operators

● Arithmetic
○ + : addition
○ - : subtraction
○ * : multiplication
○ / : division
○ % : modulus (remainder divide)
○ ** : exponentiation
○ // : floor division

● Logical
○ and : logical AND
○ or : logical OR
○ not : logical NOT

● Assignment
○ = : assign value
○ += : increase by value
○ -= : decrease by value
○ *= : multiply by value
○ /= : divide by value
○ %= : modulus by value

● Comparison
○ == : equal to
○ != : not equal to
○ > : greater than
○ < : less than
○ >= : greater than or equal to
○ <= : less than or equal to

Logical flow controls

if <condition 1>:
 <do something>
 if <another condition>:
 <do something>
elif <condition 2>:
 <do something>
else:
 <do something>

While loop

i = 1
while i < 10:
 print(i)
 i += 1

i = 1
while i < 10:
 if i == 4:
 # break out of loop
 break
 print(i)
 i += 1

i = 1
while i < 10:
 if i == 4:
 # skip to next iteration
 continue
 print(i)
 i += 1

For loop

loop over a list and print each element
fruits = ["apple","banana","orange"]
for x in fruits:
 print(x)

print each letter in a string
for x in "apple":
 print(x)

print integers 0 to 9
for x in range(10):
 print(x)

Resources

● https://www.w3schools.com/ - Great online learning resource

● https://www.youtube.com/@codebreakthrough - Excellent tutorial videos

● https://wiki.python.org/moin/BeginnersGuide - Good documentation

● https://learn.microsoft.com/en-us/windows/python/ - For Windows users

● https://www.python.org/

● https://stackoverflow.com/ - Ask questions to experts

https://www.w3schools.com/
https://www.youtube.com/@codebreakthrough
https://wiki.python.org/moin/BeginnersGuide
https://learn.microsoft.com/en-us/windows/python/
https://www.python.org/
https://stackoverflow.com/

