
C++ Part 4

Recap

● Memory allocation and pointers

● User-defined functions

● Pairs

● Pass by reference

● Recursion

Header files

● Header (*.h) files are useful for factorizing code

○ Declarations/interfaces in header and definitions/implementations in source code

● Include user-defined headers as #include "header.h"

○ Can use relative paths with "": #include "../dir/header.h"

● Good practice: include header files (and libraries) at the lowest-level possible

○ Included files are passed on with subsequent #include statements

● If using multiple source code files, include all in compile command

○ Package managers and makefiles can handle this for you

Classes: intro
● Classes and object are the main aspects of object-oriented programming

● Class: a template for objects with various attributes and functions (methods)

● Object: an instantiation of a class with defined values for attributes

Class: country USA France Japan

int year_established 1776 843 -660

std::string continent "North America" "Europe" "Asia"

float population 3.33e8 6.8e7 1.25e8

Classes: declaration and member attributes

● Class must be declared before any instances can be created

● Class name, attributes and methods are declared together

● Attributes can be objects of any type

● Access attribute using . or -> followed by attribute name

class MyClass {
 public:
 int var1;
 float var2;
};

MyClass obj;
obj.var1 = 3;
std::cout << obj.var1 << std::endl;

Classes: member methods

● Classes can have dedicated methods that operate on class attributes

● Methods can be defined in-line (in declaration) or separately

○ Class namespace needed when defining separately

class MyClass {
 public:
 int var;
 int getvar(){return var;}
 void printvar();
};

void MyClass::printvar() {
 std::cout << var << std::endl;
}

Classes: access specifiers

● Class attributes and methods are given access keywords

○ public: accessible from outside the class

○ private: cannot be accessed outside the class

○ protected: cannot be accessed outside the class, but can be accessed by derived classes

● Good practice: keep attributes private and use public accessors

class MyClass {
 public:
 void setvar(int);
 int getvar();
 private:
 int var;
};

void MyClass::setvar(int newvar) {
 var = newvar;
}
int MyClass::getvar() {
 return var;
}

Classes: constructor
● Constructors generally defined to perform functions that are needed

○ Instantiate and initialize member attributes

○ Allocate memory for pointers

● Default constructor creates object but doesn’t initialize anything

● Called whenever a new instance of the class is created

class MyClass {
 public:
 MyClass(int);
 MyClass() = default;
 private:
 int var;
 float * pointer;
};

MyClass::MyClass(int newvar) {
 std::cout << "Making MyClass" << std::endl;
 var = newvar;
 pointer = new float;
}

Classes: initializer list

● Class attributes can be initialized with initializer list

● Can only be done for objects with a default constructor

● Executed before constructor

● Considered better practice

class MyClass {
 public:
 MyClass(int);
 private:
 int var;
 float * pointer;
};

MyClass::MyClass(int newvar) :
 var(newvar), pointer(nullptr)
{
 std::cout << "Making MyClass" << std::endl;
 pointer = new float;
}

Classes: destructor

● Destructors are used to perform functions needed when object is deleted

○ When object goes out of scope or when pointer is deleted

class MyClass {
 public:
 MyClass(int);
 ~MyClass();
 void setvar(int);
 int getvar();
 private:
 int var;
 float * pointer;
};

MyClass::~MyClass() {
 std::cout << "Bye from MyClass!" << std::endl;
 delete pointer;
}

Classes: inheritance

● Classes can inherit structures from one another

○ Useful to minimize redundant code

● Derived classes gain all public or protected members of base class

class Vehicle {
 public:
 int size;
 protected:
 std::string fuelType;
 void start();
};

class Car : public Vehicle {
 public:
 int getSize() {return size;}
 void ignition() {start();}
 protected:
 std::string make = "Ferrari";
};

Maps

● A std::map (map library) holds a variable length set of key/value pairs

● Useful for storing information associated with list of names

● Easiest access (read or write) uses mymap[<key>]

○ If element doesn’t exist, it has default value or is assigned

○ If element exists, value is read or value is overwritten

● Key and value accessed with first and second when looping over elements

std::map<std::string,int> mymap;
mymap.clear();
mymap["a"] = 3;
std::cout << mymap.size() << std::endl;
std::cout << mymap["a"] << std::endl;

for(auto const& x : mymap) {
 std::cout << x.first << std::endl; // key
 std::cout << x.second << std::endl; // value
}

Default argument values

● Functions arguments can be given default values

○ If no argument is given, default value is used

○ Arguments with optional values must be at the end of list

● Define default value in declaration

int sum(int x, int y = 0) {
 return x + y;
}
int main() {
 std::cout << sum(8,5) << std::endl;
 std::cout << sum(8) << std::endl;
 return 0;
}

Resources

● https://www.w3schools.com/ - Great online learning resource

● https://www.youtube.com/@codebreakthrough - Excellent tutorial videos

● https://en.cppreference.com/w/ - Thorough documentation

● https://stackoverflow.com/ - Ask questions to experts

https://www.w3schools.com/
https://www.youtube.com/@codebreakthrough
https://en.cppreference.com/w/
https://stackoverflow.com/

