
C++ Part 3

Recap

● Non-primitive types, type casting, auto type

● cmath library and random numbers

● Strings are variable length sets of characters

● Arrays are fixed length sets of a single type

● Vectors are variable length sets of a single type

● For and while loops iterate and repeat code

● Arguments can be passed to main()

Memory allocation

● Variables are stored at some place in memory

● You can access the location in memory using the address-of operator (&)

● The address points to a particular place in memory, not the actual value

int myint = 10;
std::cout << &myint << std::endl;

Pointers
● Pointers store a memory location that can be referenced to get a value

○ Generally faster to use than complex data types

● Memory must be explicitly allocated (new) and deallocated (delete)

● Unallocated pointers usually should be initialized to nullptr (C++11)

● Use -> instead of . to call class methods on pointers

● Use dereference operator (*) to access object

std::string * mystring = new std::string("hello");
std::cout << *mystring << std::endl;
delete mystring;

std::vector<int> * myvec = nullptr;
myvec = new std::vector<int>;
myvec->push_back(3);
std::cout << myvec->size() << std::endl;
std::cout << (*myvec).size() << std::endl;
delete myvec;

Smart pointers

● If pointers are not deleted, this can lead to memory leaks

○ Can cause jobs to crash if sufficiently complex code

○ Can be difficult and painful to track down

● Smart pointers (std::unique_ptr) provide easier memory management (C++11)

○ Need to include memory library

● Memory is automatically released when scope is exited

● After initialization, treat as a raw pointer

std::unique_ptr< std::vector<int> > myvec;
myvec.reset(new std::vector<int>);
myvec->push_back(3);
std::cout << myvec->size() << std::endl;

std::unique_ptr<int> myint(new int(7));

Functions - intro

● Functions enable allow more compact and cleaner code

● Reduce redundant code

● Modular - can be used in multiple places

● Fundamental aspect of class definitions (more next time)

● Functions must be declared or defined before they are called in main()

int myfunc() {
 return 7;
}
int main() {
 std::cout << myfunc() << std::endl;
 return 0;
}

int myfunc();
int main() {
 std::cout << myfunc() << std::endl;
 return 0;
}
int myfunc() {
 return 7;
}

Functions - arguments

● Functions can be defined using arguments

● Argument types and names are defined in function declaration/definition

● Passed values are copied into local variables within function

○ It is good practice to ensure all arguments are used

int sum(int x, int y) {
 return x + y;
}
int main() {
 std::cout << sum(8,5) << std::endl;
 return 0;
}

Functions - return values

● Functions should be terminated with a return statement

○ Not strictly necessary in all cases, but a good practice

○ void functions don’t need a return statement

○ return can be used with logical controls to terminate function early

● Function declaration defines what type of value is returned

○ Returned value must be castable into return type

● Only a single value can be returned by a function

● In case multiple outputs are needed from a function, there are options

Overloaded functions

● Functions can be overloaded to cover multiple use-cases

○ E.g., sum either 2 or 3 (or an arbitrary amount) values that could be float or int

○ Different function names could be used, but overloading can be easier for maintenance

● Declare multiple functions with same name but with different return type
and/or set of arguments

● Compiler will automatically assign correct version (or complain if ambiguous)

int sum(int x1, int x2);
int sum(int x1, int x2, int x3);
int sum(std::vector<int> x);
float sum(float x1, float x2);
float sum(float x1, float x2, float x3);
float sum(std::vector<float> x);

Pairs

● A std::pair holds two variables of any type (need utility library)

○ Variable types are defined in declaration

● Useful when you want two return values from a function

● Initialized using std::make_pair(...)

● Elements accessed with first and second (note: no parentheses)

std::pair<char,int> mypair1("a",7);
std::pair<char,int> mypair2;
mypair2 = std::make_pair("b",4);
std::cout << mypair1.first << std::endl;
mypair2.second = 9;

Pass by reference

● Passing an argument to a function by reference can directly change variable

○ Address in memory is being passed, so actual location of variable, not just its value is used

● Use address-of operator (&) in function declaration

int myfunc(int &x) {
 x += 3;
 return 7;
}
int main() {
 int y = 9;
 int z = myfunc(y);
 std::cout << y << std::endl;
 std::cout << z << std::endl;
 return 0;
}

Recursion
● A function can recursively call itself

○ Generally return the function again with different arguments

● Often same functionality can be achieved with loops

● Important: define stopping conditions to return a default value!!
int factorial(int x) {
 if(x < 2) return x;
 return x * factorial(x-1);
}
int main() {
 int y = 9;
 int z = myfunc(y);
 std::cout << y << std::endl;
 std::cout << z << std::endl;
 return 0;
}

Resources

● https://www.w3schools.com/ - Great online learning resource

● https://www.youtube.com/@codebreakthrough - Excellent tutorial videos

● https://en.cppreference.com/w/ - Thorough documentation

● https://stackoverflow.com/ - Ask questions to experts

https://www.w3schools.com/
https://www.youtube.com/@codebreakthrough
https://en.cppreference.com/w/
https://stackoverflow.com/

