
C++ Part 2

Recap

● Compile c++ code using g++ command

● Include libraries using #include <blah>

● Use iostream library and std::cout to print to screen and std::cin for input

● Logical flow controls with if and else statements

Non-primitive types and class methods

● Non-primitive types are typically defined by classes

○ Like primitive types, it is usually necessary to initialize non-primitive objects

● Class objects usually have associated properties and methods

● Class methods generally modify or return information about class properties

myclass myobj = <something>;
myobj.mymethod1();
myobj.mymethod2(myargument);

Casting data types

● It is sometimes possible to change (cast) from one data type to another

● Primitive types can be changed, but sometimes information is lost

● Non-primitive types may or may not be changed, depending on definitions

● Implicit and explicit casting are possible

Explicit:

int myvar1 = 7;
int myvar2 = 5;
float myvar3 = float(myvar1) / float(myvar2);

Implicit:

float myfloat = 7.3;
int myint = myfloat;

https://en.cppreference.com/w/cpp/language/implicit_conversion
https://en.cppreference.com/w/cpp/language/explicit_cast

Auto data type

● Introduced in C++11

○ Need to use -std=c++11 flag with GCC (not necessary for some other compilers)

● Automatically assigns correct data type based on return type of a function

● Useful when return type may change or to save typing for long type names

int var1 = 7;
auto var2 = var1;

CMath library and random numbers

● C++ provides most common math functions with the cmath library

○ Find more details at https://en.cppreference.com/w/cpp/header/cmath

● Many functions such as std::sqrt(...) and std::sin(...)

● Mathematical constants such as M_PI

● Random numbers can be generated using cstdlib library

● std::rand() generates random integer between 0 and RAND_MAX

○ Not actually random, but created from an algorithm that starts with a seed number

○ Use std::srand(...) to set seed

○ More details: https://en.cppreference.com/w/cpp/numeric/random/rand

https://en.cppreference.com/w/cpp/header/cmath
https://en.cppreference.com/w/cpp/numeric/random/rand

Strings

● A std::string is a class that holds a variable length sequence of characters

○ https://en.cppreference.com/w/cpp/string/basic_string

● Include the string library

● Generally initialized using "text in quotation marks"

● Many methods available such as append(), find() and replace()

● Strings can be added together with the += operator

● More complex strings can be built with std::stringstream (include sstream)

○ Beyond the scope of this class, but worth looking into individually

○ https://en.cppreference.com/w/cpp/io/basic_stringstream

https://en.cppreference.com/w/cpp/string/basic_string
https://en.cppreference.com/w/cpp/io/basic_stringstream

Arrays

● A fixed-length set of values of a single type

● Declare arrays as (with optional initialization):

float myarray[3] = {5, 2, 9};

● Access value at index i to read or set:

myarray[i] = 6;

● Indexing begins at 0: a length-3 array uses indices 0, 1, and 2

● Trying to access beyond the end of an array can cause problems

○ Reading will result in undefined results, setting can lead to segmentation violations

Vectors

● Variable-length set of values of a single type (include vector library)

○ Allocated memory is dynamically allocated as values are added

std::vector<double> myvec;

● Add elements to vector:

myvec.push_back(5.8);

● Access element i with myvec.at(i) or myvec[i]

● Get the size of a vector with myvec.size()

● Empty the contents of a vector with myvec.clear()

While loops

● Iteratively repeat steps as long as a condition is met

● Skip an iteration with continue

● Exit out of the loop early with break

int num = 1;
while(num < 20)
{
 if(num%3 == 0) continue;
 std::cout << num << std::endl;
 num += 2;
}

For loops

● Iteratively repeat steps for a defined number of times

● Range-based and for-each are commonly used

○ Other methods such as using iterators are available, but somewhat archaic

Range-based:

std::vector<int> vec = {3,7,2,9};
for(int iNum = 0; iNum < vec.size(); iNum++)
{
 std::cout << vec.at(iNum) << std::endl;
}

For-each:

std::vector<int> vec = {3,7,2,9};
for(auto num : vec)
{
 std::cout << num << std::endl;
}

User arguments

● argc is the number of arguments and argv is an array of the values

// hello.cxx file
#include <iostream>
int main(int argc, char** argv)
{
 std::cout << argc << std::endl;

 for (int i = 0; i < argc; i++) {
 std::cout << argv[i] << std::endl;
 }

 return 0;
}

Resources

● https://www.w3schools.com/ - Great online learning resource

● https://www.youtube.com/@codebreakthrough - Excellent tutorial videos

● https://en.cppreference.com/w/ - Thorough documentation

● https://stackoverflow.com/ - Ask questions to experts

https://www.w3schools.com/
https://www.youtube.com/@codebreakthrough
https://en.cppreference.com/w/
https://stackoverflow.com/

