
C++ Part 1

Object oriented programming

● Designed around data and objects rather than functions and logic
○ Object classes can contain member properties and functions

● Programs can be compiled or interpreted
○ Compilation creates machine-readable commands from human-readable code

■ Typically runs faster but isn’t universally readable across all computers

○ Interpretation uses human-readable code

■ Not machine-dependent but typically executes more slowly

● C++ is typically compiled and Python is an interpreted language

● C++ is based on C, but is an object oriented language

C++ files

● *.cpp or *.cxx: source code where the main code lives

● *.h: header file where declarations are typically done

● *.out or *.exe: executable to run the compiled program

● Note that these are conventions and not required

Compilation

● 4 steps in compilation

○ Preprocessing: remove comments, expand macros and included files

○ Compiling: generate assembly language from c++ code

○ Assembly: convert assembly code into pure binary code (known as object code)

○ Linking: merge object code from multiple modules and link library function code

● Many compilers available - we will be using GCC

● Syntax and other errors can be found when compiling

○ Logical errors and other issues typically only show up at run time

https://en.wikipedia.org/wiki/List_of_compilers#C++_compilers

Compilation II

● Compile source code mycode.cxx with:

g++ mycode.cxx

● This creates an executable a.out that can be run using:

./a.out

● The following command allows you to name the output e.g., main.exe:

g++ -o main.exe mycode.cxx

Basic c++ syntax

● Whitespace is ignored

○ Indentation is useful but not required

● Lines end with semicolon (;)

● Single line comments are denoted with //

● Block comments denoted as /* … */

● Scopes are defined using { … }

● Arguments are defined with (…)

● Preprocessor directives (such as include statements) begin with #

The basic source code structure

// hello.cxx file
int main()
{
 return 0;
}

Including libraries

● Include standard or user-defined libraries to make use of functionality

○ List of standard libraries available here: https://en.cppreference.com/w/cpp/header

● Include directives should appear at the top of the source code

● Syntax:

○ #include <blah> for standard libraries

○ #include “myblah.h” for user-defined libraries

https://en.cppreference.com/w/cpp/header

Output messages

● It is useful to add print out statements so you can track what your code does

● Typically done using the iostream library and std::cout statements

○ Formatted output (printf) is also possible, but primarily for special cases

// hello.cxx file
#include <iostream>
int main()
{
 std::cout << "Hello world" << std::endl;
 return 0;
}

Variable and primitive data types
● c++ makes use of variables that temporarily hold values
● Variables must be explicitly declared before they can be used

○ It is good practice to initialize variables to avoid undefined behavior
● Variables must have a type, either primitive or non-primitive
● Primitive data types:

○ int: Integer value
○ float: Floating point value (i.e., decimal value)
○ double: Double precision float (twice the precision)
○ fool: True or False
○ char: Single ASCII character
○ void: No data (empty)

● Common modifiers:
○ unsigned
○ long

Check the size of each
data type on your
machine using e.g.,
sizeof(int)

https://www.ascii-code.com/

User input

● The iostream library allows you to read in user input to variables

// hello.cxx file
#include <iostream>
int main()
{
 int first = -1; // my first number
 int second = -1; // my second number

 std::cout << "Hello world" << std::endl;
 std::cout << "Please type two numbers:" << std::endl;
 std::cin >> first >> second;
 std::cout << "You typed: " << first << " and " << second << std::endl;

 return 0;
}

Mathematical operations

● Arithmetic
○ + : addition
○ - : subtraction
○ * : multiplication
○ / : division
○ % : modulus (remainder divide)
○ ++ : increment by 1
○ -- : decrement by 1

● Logical
○ && : logical AND
○ || : logical OR
○ ! : logical NOT

● Assignment
○ = : assign value
○ += : increase by value
○ -= : decrease by value
○ *= : multiply by value
○ /= : divide by value
○ %= : modulus by value

● Comparison
○ == : equal to
○ != : not equal to
○ > : greater than
○ < : less than
○ >= : greater than or equal to
○ <= : less than or equal to

Logical flow controls
if (<condition 1>) {
 <do something>
 if (<another condition>) {
 <do something>
 }
}
else if (<condition 2>) {
 <do something>
}
else {
 <do something>
}

switch (<expression>) {
 case <value 1>:
 <do something>
 break;
 case <value 2>:
 <do something>
 break;
 case <value 3>:
 <do something>
 break;
 default:
 <do something>
}

Resources

● https://www.w3schools.com/ - Great online learning resource

● https://www.youtube.com/@codebreakthrough - Excellent tutorial videos

● https://en.cppreference.com/w/ - Thorough documentation

● https://stackoverflow.com/ - Ask questions to experts

https://www.w3schools.com/
https://www.youtube.com/@codebreakthrough
https://en.cppreference.com/w/
https://stackoverflow.com/

