Experimental HEP Analyses



Overview of analyses

Signal and background simulation
Object definition/selection

Event preselection

Selection optimization

Background estimation and validation
Systematic uncertainty evaluation

Statistical analysis
o Fitting, bump hunting or setting limits
Interpreting results



Monte Carlo

Most analyses involve comparing collision data to simulated data
o Monte Carlo (MC) method used

Significant tuning is applied to MC sample parameters to match data

MC generation is done in discrete steps:
o Event generation - exact calculations of interactions and decays given initial conditions
o Parton showering/hadronization - parton fragmentation and formation of hadronic showers
o Detector simulation - parameterized or stepwise simulation of particles interacting with
detector material and depositing energy
o Pileup overlay - superimpose pileup events on single collision simulation
o Digitization - conversion of deposited energy to digital signals

Many third party tools used for first 2 steps (Pythia, Herwig, MadGraph, etc.)
Analysis teams design and test commands to simulate signal processes

o Request sent to central production to ensure correct settings for full sample
Common Standard Model processes managed centrally
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Data formats

Pile-up Detector MC Event
Digitization m Simulation m Generation

Reconstruction

Trigger Simulation Reconstruction

ESD2A0OD

RAW2ESD

Persistent data format

RDO_Trigger

Transient data format

NTUPLE



Applying corrections

e |Itis critical that MC describes data well
o Disagreements between MC and data can result in false observations
e Modeling is corrected/validated in phase space where no signal is expected
e Pileup reweighting:
o Pileup condition profile of collisions is assumed for MC production

m Allows MC to be produced before collision data is collected
o MC events are reweighted to match the data pileup distribution

e Scale factors:
o Detector response is not perfectly modeled
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o  Obiject calibrations and characteristics can differ from data to MC Mean Number of Interactions per Crossing
o Per-object scale factors applied to reweight MC to match data response



Obiject selection

e Analysis is performed using physics objects
o Electrons, photons, jets, etc.

e Necessary to define what constitutes an object for the analysis
o Important to harmonize definitions between analyses that will be combined

e CP groups provide recommendations that need to be followed
e Minimum p., n range, and quality criteria for validity of recommendations
o Limited by detector design and techniques to derive calibrations/uncertainties
e Stricter criteria can be used for analysis reasons such as trigger thresholds
e \Working points (WPs) are provided for object identification

o Loose, medium, tight, etc.
o Tighter WPs reject more background as well as signal

e Choose overlap removal priority based on analysis signature



Example: muons

Muon candidates are reconstructed from tracks in the muon spectrometer, matched to tracks in the inner
detector where available [132]. In the absence of full tracks in the muon spectrometer, muons with || < 0.1
can be reconstructed from track segments in the muon spectrometer, or energy deposits compatible with
that of a minimum-ionising particle in the calorimeters. If an inner-detector track is present, it must match
the direction and momentum of the muon spectrometer track for it to be included. The muon momentum is
defined by using information from both the muon spectrometer and the inner detector where available.
Only muon candidates with pt > 7 GeV and |n| < 2.7, and passing loose quality requirements based on
the number of hits used to reconstruct the tracks, with an efficiency of around 99%, are considered for
further analysis. Lastly, isolation requirements with an efficiency of around 95% that are based on the
presence of particle-flow objects [133] in a cone of p’T‘-dependent size AR around the muon are applied,
except for muons used in the b-tagged-jet energy correction described below.




Event preselection

e Preselection refers to basic selection criteria that define your signal signature

e Begins with one or more triggers
o Select triggers with lowest thresholds that are sensitive to signal
o Multiple triggers can target different regions of phase space (1 high-p; y vs 2 med-p_. y)

e Select basic set of objects that define analysis signature
o Example: 2 opposite sign leptons, = 3 jets, MET > 100 GeV, and 0 b-tagged jets

e Basic kinematic selections to remove significant backgrounds
o Example: |m, - 91.2 GeV| > 10 GeV to remove most Z—{{ events

e Criteria are often placed on objects ordered by p.. (leading means highest p_)

e Multiple channels can be defined, such as electron and muon channels
o Generally useful because background composition can differ



Regions

e Multiple regions of phase space are used in an analysis
o Aregion is defined with a set of selection criteria (cuts) on various object/event quantities
o Regions should usually be defined to be mutually exclusive (orthogonal)
e Signal region (SR):
o Region which contains the majority of the expected signal
o  Where the final fit or statistical analysis is performed
e Control region (CR):
o Region that is enriched in some background or depleted of signal
o Useful for constraining/correcting/deriving background estimate
e Validation region (VR):
o Region that is reasonably close to the signal region
o Used to validate methods involving CRs and to derive associated uncertainties



Analysis optimization
e Preselection is usually insufficient to maximize sensitivity to signal
e Signal significance can be used as a proxy for actual sensitivity. One version:

2% =S/VB

o Sis number of expected signal events, B is number of expected background events

e Can be done using individual variables or multivariate method outputs
o Machine learning techniques are very useful for distinguishing signal from background
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Background estimates

e Any event selection will retain background events
e Itis crucial that the background be well-modeled
o Incorrect modeling can lead to false differences w.r.t. collision data

e Begin by creating a list of all SM processes that can give same signature
o Account for possibility of particles being incorrectly reconstructed/identified

e Significant effort is spent thoroughly verifying background modeling
e Typically a combination of MC simulation and data-driven methods are used
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Data-driven MC corrections
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Data-driven background estimates

e It is often possible/necessary to estimate background directly from data
o Avoids issues of detector response modeling and background composition in MC

e Sideband fits:

If background shape is expected to be smooth in SR, it can be derived from nearby data

o Define sideband control regions with very little expected signal

o Fit smooth function to data in sidebands and interpolate to signal region

o Additional validation regions can be used to validate extrapolation and derive uncertainties

e Fake factors and fake rates:
o MC generally models detector response to incoming particles well
It poorly models response for incorrectly identified (fake) objects
Composition of backgrounds with fake objects is very difficult to get right
Use data with objects that fail identification/quality criteria to estimate fakes background
Techniques involve multiple control and validation regions

(@)

o O O O



Events / GeV

Events - fitted bkg

Sideband fits

500 T T H N DL L L L LS

- ¢ Data ATLAS ]

- immm Background {s =13 TeV, 139 b -

— —— Signal + Background ]

400~ _ signal ]

B | ,  VBF-enhanced i

1 1 i

300L 1 1 —

N 1 ! ]

T sideb ! Sideband .

ideb "' Tt _—

200 nd | .

N I A ]

N 1 1 i
100— 1 1

N 1 1 i

- M\L .

60E- E

40F- =

20E 7

OF 5

-2o% + e

-40f . , , , =

110 120 130 140 150 160

m,, [GeV]

m(H,) [GeV]

4
200 x10
180 3.0
160

25

140
2.0

120

1.5
100

1.0

0.5

60 80 100 120 140 160 180 200
m(H1) [GeV]

HH—4b

Events / (3 GeV)?



Fakes estimates
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Evaluating uncertainties

e Careful evaluation of uncertainties is crucial for scientific rigor

e Statistical uncertainties
o Fluctuations in data that would change with a repetition of the experiment (different dataset)

e Theoretical uncertainties
o Uncertainty on any theoretical quantity such as cross-sections, PDF, hadronization scales, etc.

e Systematic uncertainties

o Errors that will not change with a different dataset such as:

o Differences in detector response between collision data and MC (e.g., calibrations)
m Carefully derived by CP groups and provided as recommendations

o Analysis techniques such as method to estimate fakes background
m Often derived in CR as non-closure (difference between MC and data) in VR

o Choice of MC generators
m Comparison between two different generators - not actually based on data



Using systematic uncertainties

Usually up/down variations are used
o Some can only be varied in one direction

Correlated systematics should be varied up

or down together, increasing impact
o E.qg., jet energy scale for multiple collections

Uncorrelated systematics are independent
o E.g., electron energy and b-tagging efficiency

Each systematic differs in impact

Effects below a threshold can be removed
or combined into a single systematic
Used as nuisance parameters (NP) in
statistical analysis
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Statistical analysis

e Performed in some binned distribution (invariant mass, number of events, etc.)
e Probability density function created in each bin using all contributions

unconstrained

parameters, e.g. POI prediction (summed constraint term (e.g.

over samples) Gaussian)

N L R
pGi, d|k,0) = [ [ Pois(n| vk, 0) - [ ¢a;16)
auxiliary data, e.g. from T i J

calibration measurement constrained nuisance product over all
parameters bins in all channels

Uses information from signal and control regions

Signal and (some) background normalizations allowed to float

Nuisance parameters represent a penalty for varying systematic by too much
Vary normalizations and nuisance parameters to maximize likelihood function
Discovery significance or limits can be calculated from likelihood



Oggr(PP— Gk —HH) [fb]

Interpreting results

Results of statistical analysis need to be interpreted

Almost all searches result in limits

Cross-section limits on SM processes are often normalized by prediction
Can set limits on parameters other than cross-section

Exclusions of regions of theory parameter space
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ATLAS approval procedures

Analysis kickoff, formation of team and creation of Glance entry
o Make analysis known to the collaboration

Regular updates in subgroup meeting
o Feedback from a larger audience

Editorial Board (EB) request - need complete INT note

Regular EB meetings to discuss all aspects of analysis

Subgroup approval to unblind analysis

Group approval of analysis and paper draft

Circulation of paper draft to entire collaboration for feedback

Paper approval meeting to get sign-off from Physics Coordination (PC)
Language editor feedback

Spokesperson sign-off and journal submission

Feedback from journal reviewers and finally publication



