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EIC Interaction Region Requirements

• High luminosity

• High 𝑝𝑡 acceptance

• Detection of neutral particles (neutrons, photons,…)

• Longitudinal polarization

• Safely pass synchrotron radiation through the detector
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Luminosity and Focusing
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Strong focusing by =5 cm

• Luminosity ~ 1/(spot size) 
• A smaller spot size at the IP means more luminosity 
• At the IP, (beam size)X(beam divergence)= const. in each plane (emittance ε)
• Beam-beam force scales as 1/ε – beam dynamics prefers large emittance
• For a given beam (= fixed emittance), a smaller IP beam size means larger 

divergence
• Two configurations: High luminosity vs. high 𝑝𝑡acceptance
• A larger beam divergence leads to a larger 

beam size at the nearest focusing magnets –
(size at magnet)=(divergence)X(distance)

• Magnets need to have larger aperture while 
gradient (= focusing strength) remains the 
same – peak field at magnet poles is 
technically limited

Focusing elements for both beams need to be as close as possible to the IP



Crossing Angle Collisions

• Beam energies of electrons and hadrons are vastly different in EIC

• Focusing elements for electrons would have only little effect on 
hadrons, while hadron magnets would overfocus electrons

• Beams need to be separated into their respective focusing systems 
as close as possible to the IP

• A separator dipole would have to deflect the (“weaker”) electrons and 
would therefore generate a wide synchrotron radiation fan that would 
need to pass through the detector – requires large beam pipe 
diameter (HERA-II)

• Best solution: Crossing angle collisions!
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Crossing Angle and Luminosity
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• Long (~+/-6 cm), skinny (100 um) bunches colliding at an angle have very little 
overlap

• With 25 mrad crossing angle, each particle can only interact with a +/-4 mm thick 
slice of the +/-6 cm long oncoming bunch

• In head-on collisions, every beam particle in one beam can potentially 
interact with every particle in the other beam



Crab Crossing to the Rescue
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• Head-on collision geometry is 
restored by rotating the 
bunches before colliding 
(“crab crossing”)

• Bunch rotation (“crabbing”) is 
accomplished by transversely 
deflecting RF resonators
(“crab cavities”)

• Actual collision point moves 
laterally during bunch 
interaction



Detector Solenoid Effects

• Coherent orbit distortion

• Transverse coupling

• Rotation of the crabbing plane

• Polarization tilt
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Coherent Distortion of Ion Orbit
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Transverse Coupling
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• Coupling is in general a global effect and involves consideration of the entire ring or 

the entire coupled section 

• Potential for negative dynamic effects 

• Can leads to redistribution of the horizontal and vertical emittances  smaller 

beam “flatness”  luminosity reduction

• If not locally compensated at the IP can lead to change in the transverse beam 

shape  potential for luminosity reduction (beams enter solenoid uncoupled):

Ions
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No solenoid + no coupling =

Full overlap  Full luminosity
Solenoid + coupling not compensated = 

Partial overlap  Reduced luminosity
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Rotation of Crabbing Plane
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• Another aspect of coupling

• Potential for negative dynamic effects

• Impact on luminosity 

No solenoid + no coupling =

Full overlap  Full luminosity

Top view
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Solenoid + rotation not compensated = 

Partial overlap = Reduced luminosity



• The baseline scheme has no strong correctors on the rear side, so the polarization 

tilt is due to the rear side of the solenoid

• Polarization orientation at the IP in this scenario is compensated by the rear ion 

spin rotator

• The net spin effect of the entire IR involves account of the contribution of the 

forward side

• The forward spin rotator compensation the remaining net effect

Polarization Tilt
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41 0.94 -0.34 0.02 0.01

100 0.76 -0.65 0.01 0.01

200 0.50 -0.87 0.01 0.008

275 0.39 -0.92 0.007 0.007



Hadron Forward – Large 
Apertures for low 𝑝𝑡 Acceptance
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275 GeV
41 GeV
100 GeV

• Magnet aperture optimization:
Magnets yawed and shifted 
Magnets split in two (e.g. Q1A and Q1B)

• Dipoles to separate beam from neutrons

275 GeV
41 GeV

100 GeV
275 GeV +1.3 GeV px

275 GeV -1.3 GeV px



Electron Rear: Large Apertures to Pass 
Synchrotron Radiation Fan 
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IR Magnets
Forward: RHIC sec 5Rear: RHIC sec 6

• 16 SC magnets to be built (4.5 K and 1.9 K)
• 10 direct wind magnets:

• Q1eR, Q2eR, B2eR, Q1ApR, Q1BpR, Q2pR, Q0eF, B0pF, B0ApF, Q1eF

• 6 collared magnets (incl. B2pF)
• Q1ApF, Q1BpF, Q2pF, B1pF, B1ApF, B2pF



Superconducting IR magnets

15

• 10 direct-wind magnets

• 6 collared magnets

• B0 – an electron quadrupole 

inside a hadron spectrometer dipole  



IR Magnet cryostats
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Electron and hadron magnets densely packed,

side-by-side in a common cryostat on either side 

of the detector



Spin Rotators

• Both electrons and protons will have longitudinal polarization at 
the IP

• Hadron spin rotators will be taken from present RHIC (helical 
dipoles)

• Electron spin rotators are based on solenoid magnets with 
subsequent dipole – large (> +/- 100 m) chunk of beamline with 
fixed geometry, challenging to fit into existing tunnel
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HSR Arc 

HSR layout in IR6 
• Forward and rear hadron lattice matched into 

RHIC
• Snake at correct angle

• Beta = 1300m at crab cavities
• Hor. phase advance 90º

• Matching Magnets
• Mostly repurposed RHIC magnets

• few additional magnets required (some SC)

• Some need re-cryostating



ESR layout in IR6
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Design to:
• Provide room for detector components 
• Mitigate synchrotron radiation issues
• Provide longitudinal spin (new spin rotators)
• Match into the arcs
• Provide conditions for crabbing
• Allow 3 rings and beam elements  



Luminosity Sharing with two IRs

• Both electrons and hadrons are at the beam-beam limit with 
one collision point – they would not “survive” a second IR

• To enable two collision points, both electron and hadron bunch 
intensity would have to be reduced by a factor two – resulting 
luminosity at each IR would be factor 4 smaller

• Instead, we modify the fill pattern such that half the bunches 
collide in IR6, while the other half collides in IR8

• As a result, total luminosity is preserved, and each detector gets 
half of the total – a maximum 5e33 each instead of 1e34 with a 
single IR
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Summary

• EIC interaction region is highly optimized, but any IR design is 
always a compromise between luminosity, acceptance, cost, 
risk, …

• Design is driven by physics and detector needs, in close 
collaboration with experimenters

• Inner IR is practically frozen

• Remaining work concentrates on small geometric adjustments 
in the matching section towards the arcs, to fit everything into 
the tunnel
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Supplemental Slides
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Collision Synchronization

• HSR needs to operate over a wide energy range

• Changing the beam energy in the HSR causes a 
significant velocity change

• To keep the two beams in collision, they have to 
be synchronized so bunches arrive at the 
detector(s) at the same time

• Synchronization accomplished by path length 
change

• Between 100 and 275 GeV (protons), this can be 
done by a small radial shift – there is enough 
room in the beampipe

• For lower energies, use an inner instead of an 
outer arc as a shortcut. 90 cm path length 
difference corresponds to 41 GeV proton beam 
energy
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Emittance Control in the ESR

• EIC needs 24 nm emittance from 5 to 18 GeV for optimum 
luminosity, but equilibrium emittance in an electron storage ring 
depends on beam energy:

• Betatron phase advance μ per FODO cell is the “knob” to adjust 
the emittance 

• 60 degrees at 10 GeV and 90 degrees at 18 GeV both yield ~24 
nm

• “super-bends” for emittance generation below 10 GeV
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Beam Energies
• γ range for hadrons:

• γ = 43.7 through “41 GeV arc”
• 107 < γ < 293 with radial shift

• Maximum hadron energy:
• E [eV] < 916*c [m/sec]*Z/A

• Electron energies:
• 5 to 10 GeV, with 60 degree lattice

and super-bends
• 18 GeV, with 90 degree lattice
• Energies between 10 and 18 GeV are feasible, but at somewhat 

reduced luminosity due to non-optimum emittance, scaling as γ2
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High Average Electron Polarization

• Frequent  injection of bunches with high initial polarization of 85%
• Initial polarization decays towards P∞

• At 18 GeV, every bunch is replaced (on average) after 2.2 min with 
RCS cycling rate of 2Hz
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Refilled every 1.2 minutes
B P

Refilled every  3.2 minutes

Pav=80%

Pav=80%

Re-injections

P∞= 30%
(conservative)

Re-injection



Correction of Ion Orbit
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• The closer the kicks to the IP, the smaller the orbit excursion 

• Orbit excursion inversely proportional to the beam momentum

• Concern for field non-linearity at large offsets

Vertical kick #1 

(radial magnetic field)

Vertical kick #2 

< 9 mm

(41 GeV)



Rotation of Crabbing Plane Solution
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• Pre-rotated the crabbing plane using vertical crabbing kicks: ~140 kV for ions and 

~430 kV for electrons 

Top view

Solenoid + rotation compensated = 

Full overlap  Full luminosity



Net Effect of IR on Ion Spin
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41 0.98 0.18 -0.076 0.038

100 0.97 0.23 -0.047 -0.035

200 0.93 -0.37 -0.029 0.021

275 0.88 -0.48 -0.025 -0.035


