Electron-Ion Collider User Group Meeting 2023

Valerio Calvelli (CEA Paris-Saclay) On Behalf of EIC Detector Magnet team

Status of MARCO Solenoid

July 27, 2023

Electron-Ion Collider

cea

Jefferson Lab

Outline

- ePIC Detector Solenoid (MARCO) Overview
- MARCO Magnet Specifications
- Status of the Design
- 3D Magnetic Design Results
- Conductor definition
- Mechanical Design
- Cryogenic Design
- Magnet Assembly
- Conclusions

MAgnet with Renewed COils

ePIC Detector Solenoid (MARCO) Overview

Superconducting Detector Solenoid

- 3.5 m long coil, 2.84 m room temperature bore diameter
- 2 T on-axis field
- Operating Temperature 4.5 K
- Conductor: Copper Cladded, Rutherford Cable made with NbTi superconducting strands

3

MARCO Magnet Specifications

Parameter	Value
Coil length	3512 mm
Warm bore diameter	2840 mm
Cryostat length	< 3850 mm
Cryostat outer diameter	< 3540 mm

Parameter	Value	Comment
Central Field B _o	2.0 T	
Lowest operating field	0.5 T	
Field Uniformity in FFA	12.5 % ± 100 cm around center 80 cm radius	Magnetic Field
Projectivity in RICH Area	< 0.1 (mrad@30GeV/c) < 10 T/A/mm ² From Z = 180 cm to 280 cm	Properties

Parameter	Value	Comment
B5300 (B @ Z= -5300 mm)	< 10 G	Strav field
B7400 (B @ Z= 7400 mm)	< 10 G	requirement is based on IR
B3400 (B @ R= 3400 mm)	< 10 G	magnet location

Status of the Design

MAGNETIC Design CONDUCTOR Design MECHANICAL Design CRYOGENICS Design DEFAULT SCENARIO DRAWINGS

COMPLETED COMPLETED FINALIZING FINALIZING FINALIZING

We are on schedule for the DOE Review in Nov. 2023

Status of the Design

Magnet Design – Cold Mass

Interaction Length Limits

TRANSPARENCY for the transverse momentum

Mean range

$$\Delta x = \int 1/S(E)dE$$

 $S(E) = dE/dx \propto \rho Z/A$ (Bethe equation)

Stabilizer material for conductor

Copper $ho rac{Z}{A} = 4124 rac{kg}{m^3}$ Aluminium $ho rac{Z}{A} = 1350 rac{kg}{m^3}$

3x less stopping power with the same coils dimensions and NbTi fraction in the cable if Aluminum is used

Conclusions from Workshop on Superconducting Detector Magnets @ CERN, 12/14 Sept 2022

We will not be able to use Aluminum stabilized conductors for long long time

Interaction Length Limits

	Thic	Thickness/Nuclear interaction length			
Material	BaBAR 1.4 T	ATHENA SOCRATE	Marco 1.5 T (4 layers)	Marco 2T (6 layers)	
Al	0.382	0.650	0.113	0.113	
Cu	0.011	0.170	0.114	0.166	
SS/Brass	0.000	0.417	0.136	0.181	
NbTi	0.007	0.020	0.003	0.008	
G10			0.009	0.028	
Total	0.400	1.258	0.372	0.468	

By R. Rajput-Ghoshal

We can have a magnet working at 2T with essentially the same transparency as BaBAR

9

Magnetic Design Results

Parameter	V7.6.2.2.10 3D	Units
Current	3924	Α
# turns	1668	
B ₀	2.000	т
Homogeneity	12.7	%
Projectivity	3.28	Tmm²/A
Bpeak (MOD 3)	2.671	Т
Energy	45.010	MJ
Inductance	5.846	Н
Fz MOD 1	11.88	MN
Fz MOD 2	57.5	kN
Fz MOD 3	-11.97	MN
Fz tot	-32.4	kN
Fr Tot	112	N
B5300	15.3	G
B7200	10.9	G
B3400	2.4	G

Fringe field will be compensated with local shielding around the focusing magnet

Electron-Ion Collider¹

10

Conductor Design

	Parameters	Values	Units
	Strand diameter	0.7	mm
σ	Cu/NbTi	1.3	
tran	Ic @ 2.6T & 4.7K	> 680	А
S	Filament diameter	< 30	μm
	RRR Cu	> 80	
ble	NbTi strands	20	
Cal	Transposition pitch	50	mm
nnel	RRR Cu	> 100	
Chai	Copper section (Final)	43.7	mm²
	Nominal current	3924	А
	RRR conductor	> 100	
tor	Temp. margin @ 2.6T & 4.7K	2.5	К
Juduc	Hot spot Temperature	71.4	К
Col	σ _{0.2%} @ 293K	> 165	MPa
	Unit length	1.05	km
	Total length	18.9	km

Dimensions are in mm

Order of conductor samples put in place based on these specifications

11

- First samples in October 2023
- Contacting labs to test them

Conductor Margins

B ₀	1.5 T	1.7 T	2.0 T	Units
Current	2900	3296	3924	А
B _{peak}	1.925	2.187	2.602	Т
Temp. margin	3.1	2.9	2.5	К
Enthalpy margin			7.4	kJ/m³
Load line margin	60.6	55.3	46.8	%
I / Ic(T _m ,B _{peak})	17.3	21.3	28.8	%

CMS works at 1.8K of margin

Électron-Ion Collider ¹²

Mechanical Design

Finalizing the detailed design

- Mandrel design completed
- Tie-rods finalizing
- 2D Model ready
- 3D Model finalizing

MECH Design includes

- Nominal CASE
- How to transport the magnet
- Tolerances

Électron-Ion Collider ¹³

Magnetic Design 2D Results

Each insulated conductor is composed of:

- Superconducting cable (in red) where magnetic forces are calculated for energization simulation
- Cu stabilizer (in green)
- Horizontal (in pink) and vertical (in blue) conductor insulation made of glass fiber

Magnetic Design 2D Results

<

>

Deflection

×50

Dr max = -5.89 mm

Dz max (top) = -6.61 mm

Dz max (bottom) = 6.61 mm

> Brass avoid separation btw coils and mandrel during cool-down

SCAL	
1.05E+0	02
6.79E+0	00
1.04E+0)2
99.	
95.	
90.	
85.	Peak Von Mises
81.	stress (MPa):
76.	
71.	in coils = 55
67.	< 133
62.	in ground ins - 53
57.	
53.	< 198
48.	in coll wedges = 84
43.	< 198
39.	in inter-module
34.	wedges = 54
29.	< 198
25.	in structure = 105
20.	< 345
15.	
11.	and the second

SCAL < 5.45E+01 > 6.79E+00 54. 52. 50. 47. **Von Mises stress** 45. 43. distribution in 40. coils (MPa) 38. Peak stress 36. localized at the 34. 31. top side of the 29. central coil 27. 25. 22. 20. 18. 15. 13. 11. 8.7

Electron-Ion Collider ¹⁵

Magnetic Design 2D Results

Peak Von Mises stress (MPa): in supercond. cable = 50 < 150 in Cu stabilizer = 55 < 133 in glass fiber ins. = 49 < 198

Peak Sigma RZ stress (MPa) in conductor insulation: 14 = 14

Électron-Ion Collider¹⁶

Cryogenics Design

2 thermosiphons (main + spare) Phase separator design finalizing Thermal screen design finalizing

Top view

Electron-Ion Collider

17

Ramp-up / Ramp-down

Parameter	V7.6.2.2.10	Units
Current	3924	А
Inductance	5.846	Н
Ramp	1	A/s
Power	3.642	W
Eddy current	-1015.32	А
R mandrel (P/I ²)	3.516	μΩ
M mandrel	3.570	mH
L mandrel*	2.346	μН
k	0.964	

Magnet can be ramped-up/down to full field at 1 A/s \rightarrow 1h15 min

Full 3D Thermal Analysis ongoing to know how long it takes to cool it down (estimated 8 days from room temperature)

Other On-going Activities

Tolerances

→ Monte Carlo simulation to study the effect of tolerances and the robustness of the design

Protection

- \rightarrow Finalizing the QUENCH simulations
- ightarrow Finalizing the protection circuits
- \rightarrow Expected hot-spot temperature < 100 K

Sensors

- \rightarrow List completed
- ightarrow Finalizing the positions

FMEA Analysis

 \rightarrow Ongoing for all components

Drawings

 \rightarrow Updated daily

Électron-Ion Collider ¹⁹

Conclusions

Superconducting Detector Solenoid

3.5 m long coil, 2.84 m room temperaturebore diameter2 T on-axis field

Conductor sample in production

Robust mechanical design

Magnet design is full of redundancies to make it work for more than 30 years

Working hard to deliver the design for the Final Review in Oct 5/6!

Électron-Ion Collider²⁰

How we work

- Collaboration of Jefferson Lab, CEA Saclay and Brookhaven National Lab
- 30% Design done as in-kind contribution by CEA Saclay in collaboration with Jefferson Lab Magnet Group
- BNL provides subject matter expert information on infrastructure and integration
- 60% design done as contract with CEA Saclay augmented with Jefferson Lab work and further in-kind contributions of CEA Saclay
- 90% design work is in progress in collaboration with CEA Saclay
- Expectation is that vendor contract may follow similar pattern for vendor oversight.
- Further discussions ongoing on international engagement on magnet construction phase.
- October 5/6 Final Review