

The ePIC Backward RICH Detector

Brian Page (BNL)

Outline

□ Introduction and requirements

- Components and design
- □ Simulation

DSC Organization

Requirements

- ePIC backward RICH must provide PID coverage in the η range determined by the reach of the barrel DIRC and the acceptance of the crystal calorimeter in the e-endcap, therefore ~ -3.5
 < η < ~ -1.65, at a minimum
- This part of the detector acceptance corresponds to the current fragmentation and low x physics, and is essential to support the claim of a complete hermetic coverage of the pseudorapidity range -3.5 < η < 3.5 by tracking, calorimetry and PID detectors</p>
- **D** Yellow report requirement: $3\sigma \pi/K$ separation up to 7 GeV/c
- □ Additional requirement: provide ~20 ps timing reference for ePIC ToF detectors

Integration within ePIC

- Outer HCal (sPHENIX re-use)
- Backwards HCal (tail-catcher)

A compact central detector with several subsystems

 \Box (Almost) hermetic coverage in tracking, calorimetry & PID -3.5 < η < +3.5

Particle Distributions in the e-Endcap

Aerogel

IP

- Three radial bands
- Opaque dividers
- > 2.5 cm thick, 42 tiles total

Vessel

- Lightweight structure
- Reinforced carbon fiber and 3D printed materials
- Filled with nitrogen

□ HRPPD photosensors

- ➤ 120 mm size
- ➤ Tiled with a 1.5mm gap
- 68 sensors total

Aerogel

□ A relatively moderate momentum reach is required for this RICH detector

□ HRPPD PDE is expected to be substantially smaller than of the SiPMs

> Peak value shifted to the UV range, where it cannot be used for ring imaging

Consider using aerogel with high n (1.040 ... 1.050)

- > 300 nm acrylic filter cutoff for imaging
- ➤ <N_{pe}> ~ 11-12
- For ToF still make use of the UV range for abundant Cherenkov light produced in the window
- Natural choice for simulations: Belle II (n ~ 1.045)
- Natural hardware reference: Chiba University aerogel recently produced for J-PARC (n = 1.040)
- Test samples will be produced by the end of 2023
 PIC Collabora

Vessel and Mirrors

Outer vessel shell

- Honeycomb carbon fiber sandwich
- Inner shell
 - Molded prepreg laminate
- □ Front (aerogel support) wall
 - Molded prepreg laminate
- □ Rear (sensor support) plate
 - 3D printed using reinforced carbon

Mirrors

- Molded laminate substrate
- Aluminum evaporation + coating

Photosensors and Electronics

- Basic requirements:
 - Provide a timing reference better than ~20 ps for the barrel and forward ToF subsystems
 - Provide spatial resolution ~1mm
 - Have small Dark Count Rate
 - Have reasonable power dissipation in mW per channel
 - A low material budget cooling system in front of the PWO EmCal
 - As little influence on the thermal environment around the EmCal as possible
 - Allow for a compact solution to leave more space for the proximity gap
- Photosensor: HRPPD by Incom Inc.
 - High intrinsic SPE timing resolution
 - Low Dark Count Rate (compared to SiPMs)
 - Low cost (compared to other MCP-PMTs) ePC

- □ ASIC: EICROC by OMEGA group
 - Meets the requirements
 - Will be available in 256+ channel configuration
- Collaboration Meeting Will be developed for ePIC AC-LGADs anyway

Simulation Framework

□ Standalone GEANT4 code with particle gun or HepMC3 import

□ (Almost) All optical effects included

□ Event-level digitization / reconstruction chain

 $\Box \chi^2$ based algorithm with a full combinatorial hit-to-track ambiguity resolution

7 GeV/c π and K @ η = -1.9: <5% misidentification rate (plot accumulated over 1000 two-track events)

Track Cherenkov angle (mrad) abor π_i and K_i and

(e/) π /K/p Separation Power

Momentum Vs Cherenkov angle (track)

e/ π /K/p response integrated over the whole η acceptance

 $\pi/\text{K}~\text{N}_\sigma$ separation in η bins

> Comfortably reach 7+ GeV/c momentum range with a higher than $3\sigma \pi/K$ separation level

SIDIS Performance

PYTHIA 18 x 275 GeV simulation Parameterized pfRICH hadron PID response, assuming 100% kaon detection efficiency

High Kaon Purity ~ 95% at 7 GeV/c → this **goes beyond** the requirement of SIDIS physics in the YR

Can tune cut on Cherenkov angle to vary Kaon purity vs pion rejection

π/K reconstructed Cherenkov angle

pfRICH Detector Subsystem Collaboration (DSC)

Institution	Main focus	Comments
Brookhaven Lab	HRPPD integration, ASIC interface, detector and physic modeling, engineering support	
Chiba University	Aerogel production	No institutional commitment
Duke University	Software support	
INFN Genova	HRPPD evaluation, modeling	Synergetic activities with
INFN Trieste	HRPPD evaluation, modeling	dRICH (aerogel, software)
Jefferson Lab	Engineering support, test beam data analysis	
Ljubljana University		Participating as experts
Purdue University	Vessel & mirror design and construction	
Stony Brook University	Vessel & mirror design and construction	
Temple University	Aerogel QA station	
University of Glasgow	HRPPD & MCP-PMT evaluation	
Yale University	HRPPD QA station ePIC Collaborat	ion Meeting - Warsaw

A Proximity-Focusing RICH for the ePIC Experiment - Conceptual Design Report -(Draft 1.1)

Babak Azmoun¹, Deb Sankar Bhattacharya², Daniel Cacace¹, Helen Caines³, Chandradoy Chatterjee², Jaydeep Datta⁴, Abhay Deshpande⁴, Christopher Dilk5^{5,6}, James Dunlop¹, Alex Eslinge⁶, Prakhar Garg^{4,3}, Tom Hemmick⁴, Alexander Jentsch^{*}, Alexander Kiselev^{*,1}, Henry Klest⁴, Samo Korpar⁷, Peter Križan⁷, Jeffery Landgraf⁴, Saverio Minutoli⁸, Charles-Joseph Naim⁴, Mikhail Osipenko⁸, Brian Page^{*,1}, Sanghwa Park⁹, Matt Posik¹⁰, Rok Pestotnik⁷, Andrej Seljak⁷, Prashanth Shanmuganathan¹, Nikolai Smirnov³, Bernd Surrow¹⁰, Makoto Tabata¹¹, Silvia Dalla Torre², Zhoudunming Tu^{*,1}, Thomas Ullrich^{*,1,3}, Jan Vanek¹, Anselm Vossen^{5,6}, Craig Woody¹, and Zhengqiao Zhang¹

¹Brookhaven National Laboratory, Upton, New York 11973, USA
 ²INFN, Sezione di Trieste, Trieste, Italy[†]
 ³Yale University, New Haven, Connecticut 06520, USA
 ⁴Stony Brook University, Stony Brook, New York 11794, USA
 ⁵Duke University, Durham, North Carolina 27708, USA
 ⁶Jefferson Lab, Newport News, Virginia 23606, USA[‡]
 ⁷Ljubljana University and J. Stefan Institute, Ljubljana, Slovenia[§]
 ⁸INFN, Sezione di Genova, Genova, Italy
 ⁹Mississippi State University, Mississippi State, Mississippi 39762, USA
 ¹⁰Temple University, Chiba, Japan[¶]

pfRICH Work Packages

Fabrication and Construction

Engineering design oversight

Vessel & mirrors: 3D printing & molding

Vessel: other components & assembly

Mirrors: aluminum coating & QA

Construction oversight

Component Testing

HRPPD QA station

Aerogel QA station

Detector level software & modeling Physics modeling Integration into ePIC framework **DAQ** software **Service Systems** Gas system HV & LV systems Light monitoring system **Cooling system On-board Electronics**

Blue: person identified

Green: person available after current commitments

Detector Prototype and Beam Tests FY24

Propose construction of a pfRICH quadrant prototype using materials and techniques proposed for full scale system

- Verify composite and 3D printed materials used in vessel design
- Develop construction "know-how"

□ Evaluate prototype at Fermilab Test Beam Facility in FY24

- > Quantify π/K separation performance
- Verify single and multi-photon timing performance
- Evaluate Chiba Aerogel Factory tiles for pfRICH usage
- Make use of the first five HRPPDs produced by Incom, in a fully integrated on-board ASIC configuration
- Evaluate conical mirror performance
- Check detector component integration

Summary

- A proximity focusing RICH with HRPPD photosensors has been selected for the baseline ePIC configuration
 - Ring imaging and high resolution timing in one detector
- Major subsystem components have been chosen and costed and integration, fabrication, and assembly plans have been defined
- □ Monte-Carlo modeling shows that Yellow Report requirements are met
 - Track-level p/K/p identification up to 7 GeV/c (or higher, if efficiency can be somewhat sacrificed)
- Prototype beam test expected in approximately one year
 - > Confirm p/K separation reach (ring imaging) and high resolution timing performance at once
 - Provide insight and experience for fabrication of full detector

Backup

Angular acceptance optimization

HV system

CAEN HV mainframes and *stackable* HV modules
 CERN-approved Radiall connectors

LV system

•

Cooling system

Gas system

- Assume nitrogen only configuration
- > One volume exchange per hour at a pressure 2-4 mbar
- Gas quality (industrial, ultra-pure,...) needs to be finalized

Geometric efficiency for timing purposes

- > Cherenkov light cone produced in the window creates a ~12mm spot on the photocathode
- > Tiling HRPPDs as a "flat wall" with minimal gaps provides >90% geometric efficiency ...
- \succ ... and it is complemented by timing from ring imaging photoelectrons to achieve ~100%

Geometric efficiency for timing purposes

> Timing provided by both aerogel ($\langle N_{pe} \rangle \sim 12$) and HRPPD window photons ($\langle N_{pe} \rangle$ above 80)

- Their combined geometric acceptance will be ~100%
- **ToF** meas. \leftarrow # photon hits created by particles
 - pfRICH receives photon hits from aerogel, acrylic filter, gas in expansion volume, and LAPPD window
- Efficiency (η, ϕ) : prob. of particle creating $N_{pe} > 5$.
 - **20 ps t₀ resolution** by having 6 photons, assuming 50 ps single photon time resolution (timing resolution **20ps = 50ps /** $\sqrt{6}$).

Performance enhancements

Installation of small funneling mirrors around each sensor dead area boundaries

Use of a dual aerogel configuration

- Both options implemented in software
- Both give a substantial increase in photon yield
- Recently added to the baseline configuration as a consequence of a complex ePIC detector tracker optimization (pfRICH expansion volume was shortened by ~5cm)

pfRICH material effect on the backward EmCal

pfRICH GEANT implementation imported in ePIC framework as a GDML file
 Material implemented to the best of our knowledge (vessel, HRPPDs, cooling system, etc)

