

Detector and Physics Simulation Updates

Kolja Kauder (presenter) Brookhaven National Laboratory

Chao Peng (in Central Time) **Argonne National Laboratory**

ePIC Collaboration Meeting, 07/27/2023

Priorities for 2023

• Support the detector design and integration with services.

• Support the needs for eA simulations.

• Support the development of **background modeling** [...] with the BG Task Force.

• Embrace modularity and separate the [...] digitization from the reconstruction.

• Embrace streaming readout in simulation [...]

Service Structure

Implementation

DD4Hep CAD conversion Direct conversion from CAD mesh file Ongoing work for proper materials info

Geometry

Initial set of service structure for tracking detectors (received in May) *mesh file: eic/epic-data/meshes (branch meshes)* Obsolete, but good for testing *Some overlaps with tracking detectors Can be updated once new CAD files are ready*

Material Scan in DD4Hep

Can be cross-checked with Geant4 scan Maxim Potekhin is working on it

• Simulation with converted geometry is very slow

Problems, and therefore mitigations, similar to eA simulations, see below

Overlapping with existing subsystems

Coordinate with engineers and detector subsystem collaborations *Realistic dimensions in simulation* May need effective models in simulation *Validate effective models with material scan maps*

Setup machinery for implementing the service structure in simulation

Accelerate and automate the process

Convert CAD model, cross-checking with Geant4 conversion (GDML) Test the overlaps with existing detector components Benchmark the effects from the service structure (in detector and physics) Benchmark the simulation performance

eA Simulation

eA simulation is challenging

Far-forward side: many secondaries from the collision Need good performance to accumulate statistics *Ideally << 1 sec/event*

eA Simulation

Simulation is too slow

~10 seconds for proton, much slower for nuclei

Investigate and Improve the simulation performance

- Identify the bottleneck of the eA simulations Develop tools to evaluate the performance of each FF component
- Tune Geant4 limits for the bottleneck components

Discard low-energy secondary particles, less number of steps, ...

• Try different physics lists (current: FTFP_BERT) LHEP (fast), QGSP_BERT, ...

Geometry needs updates

ZDC: Far-forward DSC is working on it (Alex Jentsch)

Investigation

eA Simulation

Material scan of the FF components

Focus on far-forward side (the likely cause as learned from eA study group) High material thickness from beamlines, ZDC, and B0 ECal (with $\phi = \pi$)

Benchmarks

• Beampipes are likely the cause of unsatisfying performance

Single particle simulations with protons: ~ 10 seconds per event eA is much worse: up to a few minutes per event (*Kong Tu*)

Plans

Continue the test of ep/eA simulations

Develop tools for an automated benchmarking eic/epic PR: ep/eA Performance Test Scripts #486
DD4Hep geometry validation with FF DSC Test with the updated geometries (ZDC, ...)
More ep/eA simulations including physics event generators

Apply mitigations to improve the performance

Try different physics Lists LHEP (fastest, good for shower simulation), QGSP_BERT, ... Register different physics models for different regions Tune the region limits Step size, energy threshold, ...

Balance between precision and performance

Overarching - Background Work

Ties together:

- Background modeling HepMC input, sources, rates
- Digitization sub-system integration time, propagation to ACTS
- Streaming readout model "Events" \rightarrow Time slices with time-stamped hits
- Strong connection to and cooperation with the track reconstruction group

Note: Also ties back to MCEG development and maintenance - FF: DPMJet \gg Pythia

Background Modeling

Sources:

- e+gas, h+gas: "Fixed target" events
 Synchrotron Radiation: 1.8M photons from <u>SynRad</u>:
 NB: No "MB events" background for now
- Input files, rates, etc.: Zhengqiao Zhang, Jarda Adam, Benjamen Sterwerf, Rey Cruz Torres - <u>Background Wiki</u>

• Merge with a given signal (DIS, particle gun):

- 1. Select a time slice width, e.g. 2µs for MAPS integration time
- 2. Place signal event(s) at random point(s) in the slice
- 3. Select **how many** background events to add from Poisson distribution
- 4. Draw random events, or SR photons from weighted distribution
- 5. Place at **uniformly random times**

First Look after Geant4

DO NOT RELY ON OR USE

DIS+BG event (Shyam)

Single muons + background (Barak)

Source files and merged files under S3/eictest/EPIC/EVGEN/BACKGROUNDS/

Digitization

• Time information is currently only propagated through Geant4

- Does **not** reach ACTS
- Does not contain/use/propagate time resolution of detectors
- On-going work on seeding and tracking currently assumes:
 - either full integration over the window for all detecors
 - or (worse) only the last hit in a given cell is counted
- While merged files can now be used for initial studies and thresholds by the track reconstruction group, we will focus on:
 - Untangling digitization from reconstruction → by the time reconstruction starts, simulation should be indistinguishable from data
 - Extra truth information for QA can be discussed
 - Improving digitization: Realistic time integration, covariance matrix

• Note: Not the first priority, but this is the natural, and simple, place for **noise**

Streaming data format

• Merged files fully embrace the concept of **time slices** instead of events:

•... but slice width, and one-event-per-slice, are just defaults and can be changed

 Other details, such as what triggers a slow detector, can be adjusted according to the DAQ / Streaming Readout groups' specifications

Summary

Service Structure

Implemented DD4Hep CAD conversion and material scan

Issues: performance, overlaps \rightarrow May need effective geometry models

Developing automatic conversion/evaluation tools

ep/eA simulation

Performance is an issue \rightarrow found the likely bottleneck Developed benchmarking tools and will continue the development Plan to explore various methods to improve performance

Background:

- Mixed signal+background files exist and are being used for reco development
- Current priority: Improved digitization and hit time forwarding to ACTS
- Throughout, the data embraces a streaming "time slice" format

This work is supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

