Far-Forward Detector (FFWD) Working Group Update

Michael Pitt (Ben Gurion University of the Negev) For the ePIC Far-Forward DWG

EIC UG Annual Meeting: July 23rd – 31st, 2023 Warsaw, Poland

The FFWD

B0pf combined function magnet

B2apf

2

B1apf

Focusing quadrupoles

The Far-Forward Detectors collaboration

Far-Forward Detector Subsystems

Boost Detectors - What's New

CAD Look credit: Jonathan Smith

Design for two detectors is converging:

Si Tracker:

- 4 Layers of AC-LGAD
- Great timing capabilities
- Sufficient position resolution by utilizing charge sharing
- Technology overlap w/ Roman pots

EM Calorimeter:

- 135 2x2x7*cm³ LYSO crystals
- Good timing and position resolution
- Technology overlap with ZDC

Bost Detectors - Simulation Studies

B0 reconstuction is available in EICRecon

Si Tracker:

- Resolution plots made by Alex J with standalone setup (more <u>here</u> and <u>here</u>)
- ACTS Tracking (a long-standing problem) was recently solved and is implemented in the simulation (see recent Sakib R <u>slides</u>), we expect more results soon

EM Calorimeter:

- Caveat studies performed with PbWO4 crystals, LYSO crystals still to be implemented in the simulation
- General performance studies (more in Michael P. talk at the <u>FF weekly meeting</u>)
- Sensitivity to soft photons (see Eden M. <u>talk</u> at the EICUG EC workshop early this week)

Big Tracking - Performance

- 27cm spacing with fully AC-LGAD system and 5% radiation length may be the most-realistic option.
- Needs to be looked at with proper field map and layout.
 - Is this resolution going to be a problem?

<u>Note:</u> momentum resolution (dp/p) is ~2-4%, depending on configuration.

Big EMCal - Performance

- Acceptance $5.5 < \theta < 20$ mrad
- Very low material budget in $5 < \eta < 5.5$

Particles within 5.5 < θ < 15 mrad don't cross the beampipe

0.6

Photons:

- High acceptance in a broad energy range (> 100s MeV), including ~MeV de-excitation photons
- ➤ Energy resolution of 6-7%
- Position resolution of ~3 mm

Neutrons:

> 50% detection efficiency (λ is almost 1)

B2apf

- Off-momentum protons \rightarrow smaller magnetic rigidity -> greater bending in dipole fields.
- Important for any measurement with nuclear breakup!

OMD

B1apf

Protons with ~35-50% momentum w.r.t. steering

magnets.

Protons with ~50-60% momentum w.r.t. steering

magnets.

B2apf

- Off-momentum protons \rightarrow smaller magnetic rigidity -> greater bending in dipole fields.
- Important for any measurement with nuclear breakup! RP

OMD

B1apf

Protons with ~35-50% momentum w.r.t. steering

magnets.

B2apf

Protons with > 60% of

Protons with ~50-60% momentum w.r.t. steering

magnets.

the beam momentum

can be reconstructed

by the Roman pots.

- Off-momentum protons → smaller magnetic rigidity -> greater bending in dipole fields.
- Important for any measurement with nuclear breakup!

B1apf

B2apf

Zero-Degree Calorimeter

Need a calorimeter which can accurately reconstruct neutral particles

B1apf

neutrons and photons Neutrons and photons react differently in materials – need both an EMCAL and an HCAL!

Zero-Degree Calorimeter

Need a calorimeter which can accurately reconstruct neutral particles

photon

B1apf

neutrons and photons Neutrons and photons react differently in materials - need both an EMCAL and an HCAL!

B2apf

ZDC

ZDC - What's New

ZDC - What's New

- ECAL: PbWO4 vs LYSO
 - LYSO crystal by Taiwan group (from CMS)
 - \circ More light yield
 - o More table for radiation
 - o But higher cost
 - Cooperation with B0 ECAL started
- HCAL
 - Korea group
 - Dual-readout calorimeter

ZDC – Performance

			Ð
--	--	--	---

Energy resolution in the new design acceptable →
Optimization, test of different ideas within the size limit.

• Next steps:

- Implementation of reconstruction
- Position resolution & shower development studies in place for the imaging part of the HCAL

ZDC - Tests

- ALICE FoCal-E test beam @ Tohoku-ELPH & CERN-PS/SPS
 - ➢ p-sub sensor, HGCROC v2 for
 - Clear MIP peaks observed for almost all
 - Reaching full depletion voltage around 300 V
- Neutron irradiation test @ RIKEN-RANS
 - Sensor, photodetectors, chips, cables
 - ➢ Up to ~10¹⁴ neutrons/cm²
- Crystal calorimeter
 - PbWO4 vs LYSO
 - Small prototype to be tested & evaluated @ Tohoku-ELPH in this winter

Summary and Takeaways

- All FF detector acceptances and detector performance are well-understood with currently available information.
 - Numerous impact studies have been done!
- Detector review is planned ~December 2023, ideal technology choices are identified, along with suitable alternate designs for risk mitigation.

Summary and Takeaways

- All FF detector acceptances and detector performance are well-understood with currently available information.
 - Numerous impact studies have been done!
- Detector review is planned ~December 2023, ideal technology choices are identified, along with suitable alternate designs for risk mitigation.
- More realistic engineering considerations need to be added to simulations as the design of IR vacuum system and magnets progresses toward CD-2/3a
 - Lots of experience in performing these simulations, so this work will progress rapidly as engineering design matures.
 - Already well-established communication between detector and physics parties and the EIC machine development group ⇒ Crucial for success!!!

Summary and Takeaways

- All FF detector acceptances and detector performance are well-understood with currently available information.
 - Numerous impact studies have been done!
- Detector review is planned ~December 2023, ideal technology choices are identified, along with suitable alternate designs for risk mitigation.
- More realistic engineering considerations need to be added to simulations as the design of IR vacuum system and magnets progresses toward CD-2/3a
 - Lots of experience in performing these simulations, so this work will progress rapidly as engineering design matures.
 - Already well-established communication between detector and physics parties and the EIC machine development group ⇒ Crucial for success!!!

Want to get involved?? Join our meetings and learn how!

Meeting time: Tuesdays @ 9am EDT (bi-weekly, or weekly, as needed) <u>https://indico.bnl.gov/category/407/</u> Wiki: <u>https://wiki.bnl.gov/EPIC/index.php?title=FarForward</u> Email-list: eic-projdet-FarForw-I@lists.bnl.gov (https://lists.bnl.gov/mailman/listinfo/eic-projdet-farforw-I)

(some) Far-Forward Processes at the EIC

(some) Far-Forward Physics at the EIC

Physics channels require tagging of charged hadrons (protons, pions) or neutral particles (neutrons, photons) at very-forward rapidities (η > 4.5).

Different final states require tailored detector subsystems.

Various collision systems (e.g. e+p, e+d, e+Au) provide unique challenges.

Integration of EIC far-forward detectors uniquely challenging due to presence of machine components, space constraint, apertures, etc.

...dilu iviAivi more:

<u>Technology</u>

- 500um, pixilated AC-LGAD sensor provides both fine pixilation.
- "Potless" design concept with thin RF foils surrounding detector components.

≻ Status

- ✓ Acceptance: $0.0^* < \theta < 5.0$ mrad (lower bound depends on optics).
- ✓ Detector directly in-vacuum a challenge for both detector and beam → impedance studies underway.
- ✓ Approved generic R&D to develop moreadaptive reconstruction code!

ML + Roman Pots: See talk by D. Ruth WG6; Tuesday @ 2pm

Off-Momentum Detectors

GEANT4 simulation

Summary of Detector Performance (Trackers)

Summary of Detector Performance (Trackers)

- Roman Pots are silicon sensors placed in a "pot", which is then injected into the beam pipe, tens of meters or more from the interaction point (IP).
- Momentum reconstruction carried out using matrix transport of protons through magnetic lattice.

Roman "Pots" @ the EIC

DD4HEP Simulation $\sigma(z)$ is the Gaussian width of the beam, $\beta(z)$ is the RMS transverse beam size.

 ε is the beam emittance.

$$\sigma(z) = \sqrt{\varepsilon \cdot \beta(z)}$$

Low-pT cutoff determined by beam optics.

- \blacktriangleright The safe distance is ~10 σ from the beam center.
- ▶ 1σ ~ 1mm
- These optics choices change with energy, but can also be changed within a single energy to maximize either acceptance at the RP, or the luminosity.

275 GeV DVCS Proton Acceptance

<u>High Divergence</u>: smaller β^* at IP, but bigger $\beta(z = 30m)$ -> higher lumi., larger beam at RP

High Acceptance: larger β^* at IP, smaller $\beta(z = 30m)$ -> lower lumi., smaller beam at RP

41

275 GeV DVCS Proton Acceptance

11748

2.605

64.22

15.29

44