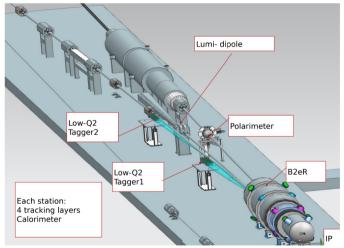
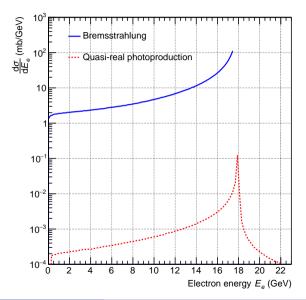
DSC-FBWD high rate trackers

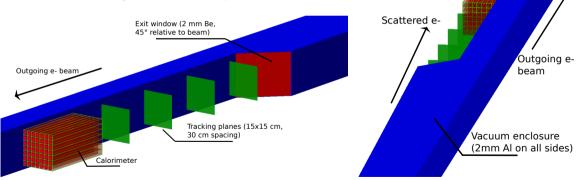
Jaroslav Adam


Czech Technical University in Prague

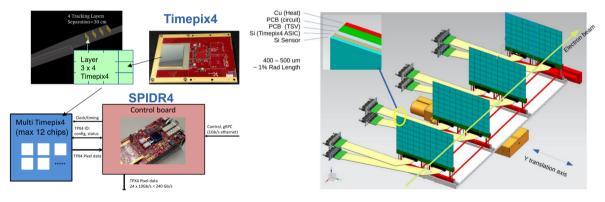
Warsaw, July 29, 2023


Introduction

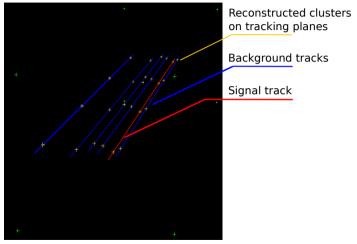
- Jaroslav Adam (Project Lead) jaroslav.adam@fjfi.cvut.cz
- Simon Gardner (Technical Lead) Simon.Gardner@Glasgow.ac.uk
- Two low-Q² tagger detectors along outgoing electron beam pipe
- Placed at about -20 m and -36 m from IP


Physics for low-Q² taggers

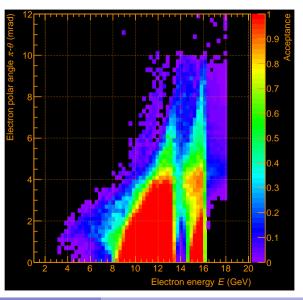
- Photoproduction in $10^{-3} \lesssim Q^2 \lesssim 10^{-1} \text{ GeV}^2$
- Scattered electrons for meson spectroscopy and exclusive pair production
- Help for luminosity measurement by coincidence with pair spectrometer
- Large background and event rates due to Bethe-Heitler bremsstrahlung – illustrated by comparing to photoproduction cross section
- The background can be mitigated by good tracking and *Q*² reconstruction


Geometry layout

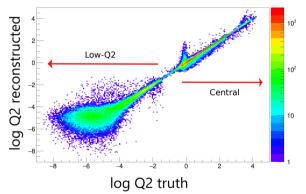
- Detectors outside beam vacuum
- Several considerations for exit window (material, thin mesh followed by 90° exit window)


Tracker technology

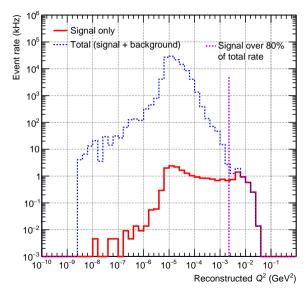
- $\bullet\,$ Timepix4 ASIC + silicon sensor, ${\sim}50\,\mu m$ thickness
- $\bullet\,$ Pixels of ${\sim}55\,\mu m$ size
- Timing resolution of about 2 ns


Tracking implementation

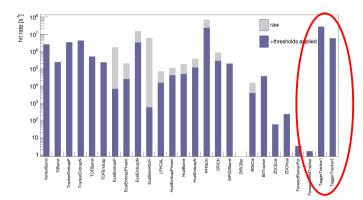
- Clustering is done in each plane
- 4-fold loop over all clusters on all 4 planes
- Every cluster combination is tested against a χ^2 limit
- No seeding is necessary, still good performance
- Event display shows mixed sample of signal and background processes
- Associations between tracks and MC particles are done after reconstruction


Tagger acceptance in electron energy and polar angles

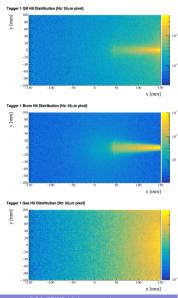
- Fraction of events having track reconstructed in one of tagger detectors
- Evaluated with a sample of photoproduction events (quasi-real) approximation


Q^2 reconstruction

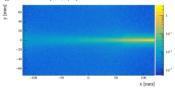
- Two different ML algorithms giving compatible results
- The algorithms connect reconstructed tracks to kinematics of original scattered electrons (energy and polar and azimuthal angle)
- *Q*² is obtained from electron energy and polar angle
- Plot shows combined reconstruction in low-Q² taggers and central detector


Event rate

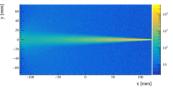
- Mixed hepmc of signal (quasi-real photoproduction) and background (Bethe-Heitler) events
- Event rates are obtained as a function of reconstructed Q²
- Background tracks reconstruct dominantly to very low Q²

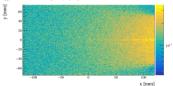

Beam-gas background

- Interaction of electron beam on residual gas
- May come not in time with expected bunch crossing
- Rates are comparable to those from the signal
- Beam-gas events originating in B2eR dipole to be included



Hit rates at the level of single pixels


- Signal from quasi-real (QR) photoproduction
- Comparison to two background sources:
- Bethe-Heitler bremsstrahlung
- Electron beam-gas


Tagger 2 QR Hit Distribution [Hz/ 55µm pixel]

Tagger 2 Brem Hit Distribution [Hz/ 55µm pixel]

agger 2 Gas Hit Distribution [Hz/ 55µm pixel]

DSC-FBWD high rate trackers

EICUG 2023, July 29

10/11

Summary and loose ends

- Basic MC for reconstruction, works to separate signal from background in mixed events
- Currently work in progress:
 - Implementation in dd4hep
 - Full sample of beam-gas events (including events inside the B2eR)
 - Detector optimization, signal extraction in tagger 2 (further from IP)
- Still to be done:
 - Synchrotron radiation
 - Exit window complying with impedance
 - Detector tests, estimates for services