Particle Flow & DIS Electron Finding in epice

Derek Anderson & Daniel Brandenburg (speaker) ePIC Collaboration Meeting Warsaw, Poland 07/26 – 07/29

the side acces

Outline: What's In this talk?

- Particle Flow (Squad Leader: Derek Anderson)
 - What is PF?
 - Charge & Goals
 - Survey of PF in other Exps
 - Plan & Next Steps

- NB: Physics Analysis and C/S Coordinators identified <u>4 priorities</u> for reconstruction software:
 - Vertexing and PID
 - Low Q2 Tagger
 - Electron Finder
 - Particle Flow
- DIS Electron Finder (Squad Leader: JDB)
 - Charge & Goals
 - Electron Finder Progress
 - Next steps

Particle Flow 101

PF is a *holistic* reconstruction approach based on physics objects (vs. detector info)

- Combines info from sub-detectors
- Simplifies analysis, at cost of reconstruction complexity

Generic PF Recipe (simplified)

- 1. Local Reco (CALO Clusters, Tracking, etc.)
- 2. "Link" info from various sub-systems
- 3. Identify "particles" from linked info
- 4. Post-processing & cleaning

Particle Flow task squad: Charge & Goals

• PF Squad Charge:

- "improve jet reconstruction using particle flow information"
 - 2 distinct regions for PF at ePIC
 - Barrel/Backward: JER set by tracker + EMCal
 - Need tracks to deconvolve clusters for neutrals
 - Forward: JER can be improved by combining track + calorimeter information
 - \bigcirc Need to separate overlapping clusters

$\circ~$ 2 initial tasks:

- Survey existing implementations
- Explore necessity of custom approach in barrel/backwards

Particle Flow: Survey

Input from several collaborators with experience at other experiments (Brian P, Mathew N, Antonio S. etc.)

- ALEPH and DELPHI implemented the first "modern" PF algorithms
 - ☞ Both make use of PID capabilities

An ML alternative to existing algorithm is being explored at CMS

- Ref.s:
 - > EPJC 81, 381 (2021)
 - > JP:CS 2438, 012100 (2023)
- Could ease computational requirements

PandoraPFA: a *very* sophisticated PF algorithm for high granularity calorimeters

- Part of AIDAsoft
- Has produced an extensive <u>detector-agnostic implementation</u>
- Currently deployed at <u>MicroBooNE</u>

As an example (batch, elem, feat) = (2, 6400, 25)

- PF Used in many
 Experiments(links below):
 - <u>CELLO (PETRA)</u>
 - <u>ALEPH (LEP</u>
 - <u>DELPHI (LEP)</u>
 - <u>H1 (HERA)</u>
 - <u>D0 (Tevatron)</u>
 - CDF (Tevatron)
 - Pandora (ILC/CLIC, MicroBooNE)
 - ATLAS (LHC)
 - <u>CMS (LHC)</u>
 - <u>sphenix (Rhic)</u>

Particle Flow Discussion | Algorithm Strawman

- * = ReconstructedParticle object
- = fixed constraint

- Infrastructure to do "bare-bones" PF *largely* exists
 - ⇒ Could implement a basic "alpha" (PFAlpha) algorithm

• Rationale:

- Motivate and test development of necessary software
- Serve as baseline to compare refinements against
- Allow analyzers to quickly start working w/ output
- Development then proceeds with testing more refined approaches, e.g.
 - Such as PandoraPFA
 - ML-based models
 - Etc.

Particle Flow Discussion | Algorithm Strawman

epic

PFAlpha:

- 1) Project tracks through calos
- 2) Associate all calo clusters within a cone of size R around the track
- Sum all calo energy in cone and subtract expected track energy from sum

4) Return

- Tracks
- Subtracted clusters
- Unassociated clusters

- Infrastructure to do "bare-bones" PF *largely* exists
 - ⇒ Could implement a basic "alpha" (PFAlpha) algorithm

• Rationale:

- Motivate and test development of necessary software
- Serve as baseline to compare refinements against
- Allow analyzers to quickly start working w/ output
- Development then proceeds with testing more refined approaches, e.g.
 - Such as PandoraPFA
 - ML-based models
 - Etc.

Particle Flow Discussion | To-Do

Missing Infrastructure (Major):

- PF Framework
 - > Factories
 - > Algorithm + configuration files
- Improved track-cluster associator
 - > Extend to include Hcals
 - However, truth-based implementation may work for interim

Missing Infrastructure (Minor):

- PFObject Visualizer:
 - Plugin (or service?) to
 visualize clusters, tracks, etc.
 - > Crucial for debugging
- Downstream analysis:
 - Code to look at impact of changes
 - Existing jet benchmarks are good starting place

Open Questions:

- Does implemented cluster splitting work in non-enabled* detectors?
- How well do existing MC-cluster associations work?
 - Currently handled by
 MatchClusters algorithm
 - > Would a separate MC-cluster associator be better?

Major = necessary for implementation
 Minor = can be pursued in parallel with implementation
 Yellow = connection with other groups
 * = existing implementation enabled for central ECals and

ECalLumiSpec (not enabled for Imaging/SciFi)

DIS Electron Finding

DIS Electron Finder

• Charge: Developing an efficient and accurate algorithm for identifying electrons and identifying the scattered electron of the DIS process

Major Goals:

- Develop unified electron identification
- Implement DIS lepton finder algorithms

Realistic DIS lepton finding is crucial for many benchmarks and analyses needed to inform detector design

DIS Electron Finder | Approaches

Taking two "parallel" approaches

"Truth"

Use truth associations

- Particle-to-Cluster associations utilize "truth" information
- Select electron using E/p utilize momentum from tracking and energy from reco Cluster
- + Similarly "truth" informed DIS lepton finder

"Reco"

- Track projections to Calorimeters
- Track to Cluster matching
- Electron identification utilizing full PID capabilities

• .

• + Realistic DIS lepton finder

DIS Electron Finder | Progress Timeline el

- ✓ Truth level Particle <-> Cluster associations (S/C team, esp. Wouter)
 - PR #666 (merged on June 24)
- ✓ Electron Identification framework strawman
 - Provides "ReconstructedElectron" collection
 - Currently implements E/p cuts utilizing ECAL info
 - Uses "Truth" associations
 - PR #751 (merged July 8th)
- ⇒ Track Projection Factory (Tyler Kutz)
 - Provides track projections to common surfaces (each ECAL / HCAL etc.)
 - EDM4EIC updates to accommodate projections
 - PR in preparation
- ⇒ Track-to-cluster matching (some prototype work from Nicho Schmidt)
 - Provides processor for matching (see <u>PR#606</u>)
 - Still significant work needed to utilize projections + implement as factory

DIS Lepton Finder Algorithms

• Goal: identify the DIS lepton using only final state information

In case of one electron anything will work. In case of multiple electrons even a simple rule, such as take electon with "maximal" energy/*pz* /etc. will work for 50+% cases if only 2 electrons are present. Basically, implemented in Rivet.

Challenges:

- How to select the DIS electron when there are multiple candidates? Essentially check the hadronic final state kinematics is consistent with the kinematics of each electron, i.e. combine multiple measurements [1].
- How to associate the semi-hard radiation from the electron with the electron? **Try to cluster** *some* energy from the calorimeter deposits with the electron. Cluster the photons from the interaction point if they are angularly close to the electron?

Summary

- Particle Flow (contact: Derek Anderson <u>dmawxc@iastate.edu</u>)
 - Survey of PF in existing / planned experiments
 - Plan and Strawman of "alpha" version of ePIC's PF implementation
 - Next steps (Volunteers needed)
 - Validation of existing cluster-splitting
 - Validation of existing MC-cluster associations
 - Development of cluster/track visualizers
 - Extending track-cluster associations to Hcal
 - Implementation of PF algorithm + factories
- DIS Electron Finder (contact: JDB <u>Brandenburg.89@osu.edu</u>)
 - Lots of progress in last 2 months initial framework outlined
 - Next steps (Volunteers needed)
 - Study and optimize E/p cuts for electron ID
 - Validate existing Electron Finder purity / efficiency
 - Study optimal use of HCAL info for e.g. pion rejection
 - Implement track-matching using track projections
 - Stay tuned, next major milestones will be accomplished in August

Particle Flow @ ALEPH & DELPHI

 ALEPH and DELPHI implemented the first "modern" PF algorithms

☞ Both make use of PID capabilities

ALEPH:

- Associate tracks to clusters and iteratively clean track+cluster objects
- Algorithm:
 - 1) Project tracks & associate them to clusters
 - 2) Identify e^{\pm} & remove them
 - 3) Identity π^0 / γ & remove them
 - 4) Identify μ^{\pm} & remove them
 - 5) Do track-cluster subtraction
 - 6) Any remaining calorimeter energies are flagged as h^0

DELPHI:

- Very similar, but slightly different order of operations
- Algorithm:
 - 1) Identify e^{\pm}/γ & remove them
 - 2) Extrapolate tracks through HPC (EMCal) + HCal
 - Any clusters "close" to extrapolated tracks are associated with track and removed
 - 4) Any remaining clusters are flagged as h^0

Particle Flow Advances

An ML alternative to existing algorithm is being explored at CMS

- Ref.s:
 - > EPJC 81, 381 (2021)
 - > JP:CS 2438, 012100 (2023)
- Could ease computational requirements

Implementation:

- 1) Extensive track and calorimeter information is fed to a GNN model
- 2) GNN converts track/calorimeter hits/cells into connected graphs
- 3) Graphs are then regressed to particles

As an example (batch, elem, feat) = (2, 6400, 25)

Particle Flow Advances

- $\circ~$ ILC/CLIC (esp. CALICE) efforts have focused on PF
 - Produced many algorithms and approaches
 - PandoraPFA

- **PandoraPFA:** a *very* sophisticated PF algorithm for high granularity calorimeters
 - Part of AIDAsoft
 - Has produced an extensive <u>detector-</u> <u>agnostic implementation</u>
 - Currently deployed at <u>MicroBooNE</u>

Algorithm: 8 stages in total

- 1) Select tracks for analysis
- 2) Select calorimeter cells & cluster based on geometry
- Recluster cells into cones around track+EMCal projections:
 - i. 1^{st} identify and remove possible γ clusters
 - ii. Then cluster remaining cells
- 4) Recluster non- γ clusters based on topology
- 5) Attempt to split overlapping clusters
- 6) Apply more sophisticated γ -ID algorithm to separate γ from h^0
- 7) Neutral fragments from h^{\pm} are identified and removed
- 8) Return: "PF Objects"
 - Matched track+cluster objects with rudimentary PID applied

Particle Flow Survey | ATLAS

ATLAS [arXiv:1703.10485]

 ATLAS makes use of a sophisticated variation on the "cluster – track" idea
 The very similar (but still distinct) to what's being utilized at sPHENIX

ATLAS:

Algorithm:

- 1) Match tracks to clusters
- 2) Determine if cluster is split
 - a) If yes, then add more clusters to track+cluster object
 - b) Otherwise move on
- 3) Subtract expected track energy cell-by-cell from clusters
- 4) Return:
 - Tracks
 - Matched clusters w/ nonzero energy after subtraction
 - Unmatched clusters

Electron Finder 07-10-2023

- Progress in June (for July Sim Campaign)
 - PR #666: Provides association containers + truth associations merged into main on June 24
 - PR #751: Implement basic electron finding with truth cluster matching
 - Work in parallel with the RECO approach (see tasks below)
- Major Tasks (July):
 - Utilize the July sim campaign output:
 - Implement a processor to test DIS lepton finder
 - Check purity of selected electrons
 - Track Projection Factory: provide track projections at relevant detectors (Tyler Kutz)
 - ✓ Needed data structure identified
 - ✓ Prototype factory in progress
 - Track Match Factory: Matching of projecting tracks to clusters (volunteer?)
 - Nicholas Schmidt already has some code (processor) to study track matching
 - Provides a starting point for factory
 - Study of E/p cuts to implement (volunteer potentially identified, discussing next steps)
 - Study HCAL info for hadron rejection / electron id
- Plans for July sim campaign
 - Utilize "ReconstructedElectrons" to test-drive DIS lepton finder (should be in EICRecon for Aug)
 - Continue work towards towards fully RECO level (complete track matching / compare to truth level matching)

Truth approach

- PR #751 Add reconstructed electron factory, algorithm utilizing E/p cut
 - https://github.com/eic/EICrecon/pull/751
 - ReconstructedElectrons Factory
 - 75 {"MCParticles", "ReconstructedChargedParticles", "ReconstructedChargedParticleAssociations",
 76 "EcalBarrelScFiClusterAssociations",
 77 "EcalEndcapNClusterAssociations",
 - "EcalEndcapPClusterAssociations",
 - "EcalEndcapPInsertClusterAssociations",
 - "EcalLumiSpecClusterAssociations",
 - 81 },
 - Output: "ReconstructedElectrons"
- Utilizes the ElectronReconstruction Algorithm
 - Any track with an ECAL match
 - Accept if 0.9 < E/p < 1.2 (needs to be studied and optimized)
 - TODO: use HCAL

• Input:

- TODO: handle multiple matches
- This is meant to be initial skeleton keep same structure for RECO approach