Summary from the 2nd detector WG

Conveners: Charles Hyde (ODU), Sangbaek Lee (ANL), Simonetta Liuti (UVA), Pawel Nadel-Turonski (CFNS/SBU), Bjoern Schenke (BNL), Ernst Sichtermann (LBL), Thomas Ullrich (BNL), Anselm Vossen (Duke/JLab)

The 2nd detector

EIC UG meeting, Warsaw, July 25, 2023

Motivation for a 2nd detector in addition to ePIC

- Needed to unlock the full discovery potential of the EIC
 - Cross checks of key results are essential!
 - Implies a general-purpose collider detector able to support the full EIC program
- New physics opportunities
 - Take advantage of much-improved near-beam hadron detection enabled by a 2nd focus,
 - Impacts, for instance, exclusive / diffractive physics; greatly expands the ability to measure recoiling nuclei and fragments from nuclear breakup.
 - New ideas beyond the Yellow Report and CD0 (EW and BSM)? Your input is essential!
- Complementary design features
 - Possible to reduce combined systematics (as for H1 and ZEUS)
 - Particularly important for the EIC where high statistics mean that uncertainties for a large fraction of the envisioned measurements will be systematics limited

Motivation for two detectors – a HEP perspective

JLAB-PHY-23-3761

Motivation for Two Detectors at a Particle Physics Collider

Paul D. Grannis^{*} and Hugh E. Montgomery[†] (Dated: March 27, 2023)

It is generally accepted that it is preferable to build two general purpose detectors at any given collider facility. We reinforce this point by discussing a number of aspects and particular instances in which this has been important. The examples are taken mainly, but not exclusively, from experience at the Tevatron collider.

arXiv: 2303.08228v2 March 24, 2023

The paper was inspired by Mont's presentation at the first 2nd EIC detector CFNS workshop in December 2022. Mont was also JLab director 2008-2017, and has been very interested in the EIC

Project perspective on a 2nd Detector

- Project Design Goals
 - Accommodate a Second Interaction Region (IR)
- DOE, and BNL and JLab as the Host Labs, are establishing a governance structure intended to support the EIC. This includes the construction of a 2nd IR and detector.
 - EAB, RRB, DOE International Agreements
- Successful delivery of the EIC Project will be a major challenge, and the priority of the EIC project leadership team
- 2nd IR and Detector will be **installed after the EIC project** is complete
 - Science case must be compelling given resources required
 - IR and detector technologies should be state of the art
 - International engagement should be significant
- Organized effort needed now to prepare plans and build support for the 2nd IR and Detector

Reference schedule for a 2nd IR and Detector

Jim Yeck, EIC 2nd detector WS, May 2023

Second detector

EIC UG 2nd detector / IP8 working group – a timeline

- December 2021 DPAP review of EIC detector proposals
 - The call included criteria for proposals to be a 2nd detector
 - While the DPAP did not make a selection of a 2nd detector, it endorsed the idea
- Spring 2022 EICUG-SC produced a brochure on a 2nd EIC detector
 - Distributed to same international funding agencies that received copies of the yellow report

- July 2022 the Det II / IP8 WG was formed. Everyone is welcome to join!
 - Conveners: Klaus Dehmelt (CFNS/SBU), Charles Hyde (ODU), Sangbaek Lee (ANL), Simonetta Liuti (UVA), Pawel Nadel-Turonski (CFNS/SBU), Bjoern Schenke (BNL), Ernst Sichtermann (LBL), Thomas Ullrich (BNL), Anselm Vossen (Duke/JLab)
 - General mailing list: <u>eic-det2-l@lists.bnl.gov</u>
 - Convener mailing list: <u>eic-det2-conveners-l@lists.bnl.gov</u>

2nd detector WG workshops

- A series of CFNS workshops at Stony Brook University
 - The first was held in December 2022 98 participants, local and remote

- The first international workshop on a 2nd detector for the EIC was held at Temple University
 - 115 participants, local and remote

Detector II / IP8 program at this EIC UG meeting, July 30-31

Detector II / IP8 program at the end of the EIC UG meeting

Session 1	(Sunday)						
14:30 - 14:40	Welcome		Marco Radici		INFN		in person
14:40 - 15:15	Intro to 2nd detector		Abhay Deshpar	ide	CFNS Stony Brook		in person
15:15 - 15:40	Physics opportunities with a 2nd focus		Pawel Nadel-Turonski		CFNS Stony Brook		in person
15:40 - 16:05	2nd detector WG		Renee Fatemi		U. Kentucky		in person
16:05 - 16:30	Generic R&D programm		Dave Mack		JLab		remote
Session 2	(Sunday)						
17:00 - 17:30	DIRC - future opportunities		Roman Dzhygadlo		GSI		in person
17:30 - 18:00	A KLM for the EIC		Simon Schneider		Duke		remote
18:00 - 18:30	Timelike Compton Scattering (dileptons)		Pierre Chatagnon		JLab		remote
Session 3	(Monday)						
9:00 - 9:35	Summary of past	t workshops - physics / theory		Simonetta Liuti	UVA		remote
9:35 - 10:10	Summary of past workshops - experiment / detect		tor	Ernst Sichtermann	LBL		in person
10:10 - 11:35	Low-Q2 tagger coverage		Stephen Kay		York		in person
10:10 - 11:00	A few degree cal	orimeter: bridging the Q2 gap	Miguel Arriata		UCR		in person
Session 4	(Monday)						
11:30 - 12:00	Reggeons		Anna Stasto		U. Penn		in person
12:00 - 12:30	gluon TMDs		Francesco Celil	perto	UAH Madrid		remote
12:30 - 13:00	double parton dis	stributions	Matteo Rinaldi		INFN		remote
Session 5	(Monday)						
14:30 - 15:00	Two detectors		Hugh Montgomery		JLab		remote
15:00 - 15:30	Synergies with th	ne LHeC	Paul Newman		Birmingham		remote
15:30 - 16:00	Deep Exclusive Meson Production as a probe of Lambda polarization at the EIC		Zhoudunming "Kong" Tu	BNL	in person		
16:00 - 16:30	Rare isotopes at the EIC		Barak Schmookler		UCR		remote
Session 6	(Monday)						
17:00 - 17:30	low-x jets / hadro	onic calorimetry in the electron er	ndcap	Brian Page	BNL		remote
17:30 - 18:30	Discussion on international participation		discussion leaders: Abhay, Rolf				

Aspirational goals for a 2nd EIC detector

- **MAGNETIC FIELD** Solenoid field up to 3T, allowing for high resolution momentum reconstruction for charged particles.
- **EXTENDED COVERAGE** for precision electromagnetic calorimetry important for DVCS on nuclei.
- **MUONS** enhanced muon ID (not only MIPs) in the barrel and (possibly) backward region.
- **BACKWARD HADRONIC CALORIMETER** Low-x physics, reconstruction of current jets in the approach to saturation.
- SECONDARY FOCUS tagging for nearly all ion fragments and extended acceptance for low-p_T/ low-x protons. Enables detection of short-lived rare isotopes.

Example: far-forward acceptance with and without a 2nd focus

Five initial benchmark channels for Detector 2 simulations

CHANNEL	PHYSICS	DETECTOR II OPPORTUNITY
Diffractive dijet	Wigner Distribution	detection of forward scattered proton/nucleus + detection of low $\ensuremath{p_{T}}$ particles
DVCS on nuclei	Nuclear GPDs	High resolution photon + detection of forward scattered proton/nucleus
Baryon/Charge Stopping	Origin of Baryon # in QCD	PID and detection for low $p_T pi/K/p$
F_2 at low x and Q^2	Probes transition from partonic to color dipole regime	Maximize Q ² tagger down to 0.1 GeV and integrate into IR.
Coherent VM Production	Nuclear shadowing and saturation	High resolution tracking for precision t reconstruction

- Please note that these were selected to illustrate particular opportunities
- You are most welcome to add your favorite process!

Thank you!

Detector II/IP8 and WG charge

"With a clear mandate from DPAP and the EICUG to support and organize a Detector II/IP8 effort, the SC held discussions with Project, Detector I and CORE leadership. We agreed to form a dedicated working group that would address the following charge:"

- 1. Engage the broader community, *including theorists, accelerator physicists and Detector I experimentalists*, to fully develop projections for the portfolio of measurements that are complementary to the Detector I physics program, including those that capitalize on the implementation of the secondary focus.
- 2. Work with the EICUG Steering Committee and Project to *recruit new institutions* and establish a diverse and vibrant 2nd Detector working group.
- 3. Utilize the extended design period for Detector 2 to identify groups that will focus on *R&D for emerging technologies* that could provide another aspect of complementarity to Detector 1.
- 4. Facilitate the development of a *unified concept* for a general-purpose detector at IR8. In particular, the 2nd detector should be complementary to the project detector at IR6 and may capitalize on the possibility of a secondary focus at IR8.

Luminosities in IR6 (ePIC) and IR8 (Detector 2)

18x275	10x275	5x275	10x100	5x100	5x41
1.65×10^{33}	$10.05\!\times\!10^{33}$	5.29×10^{33}	4.35×10^{33}	3.16×10^{33}	0.44×10^{33}

- The maximum luminosity will be similar for both Detector 1 and 2.
- When operated together, they will share the *beam current* (*luminosities* can be different).
- In IR6, a higher luminosity reduces the forward low-p_T acceptance.
- Due to the 2nd focus, IR8 can operate at max luminosity without any acceptance penalty for x > 0.01, and a smaller one at lower x

This complementarity will allow for a global optimization. Detector 2 will have a natural advantage for exclusive / diffractive physics, and in particular for detection of nuclei.