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DIRCs Overview

BaBar DIRC Belle II TOP PANDA Barrel DIRC ePIC hpDIRC

3.5 GeV/c 4 GeV/c 3.5 GeV/c 6 GeV/c

GlueX DIRC

3.7 GeV/c

3 s.d. π/K separation

 Radially compact (few cm)
 Excellent performance 

 Robust operation
 Active R&D pushing performance limits
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? GeV/c
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DIRC Concept
Detection of Internally Reflected Cherenkov Light

 Charged particle traversing radiator with 
refractive index (n1 ≈ 1.47) and β = v/c > 1/n 

emits Cherenkov photons on cone with half 
opening angle cos θc = 1/βn(λ)  

 Some photons are always totally internally 
reflected for β≈1 tracks

 Radiator and light guide: polished, long 
rectangular bar made from Synthetic Fused 
Silica (“Quartz”)

 Proven to work                                      
(BaBar-DIRC: 3 s.d. for π/K at 3.5 GeV/c)
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Cherenkov Angle Resolution
in Fused Silica
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Cherenkov track resolution:

~ 1 mrad for hpDIRC

< 1 mrad for xpDIRC
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Generic Design

expansion volume 
(fused silica prism) 

radiator 
(fused silica bars) 

photo sensors

3 layer spherical lens

 Fast focusing DIRC, utilizing high-resolution 3D (x,y,t) reconstruction
 Design based on BaBar DIRC, R&D for SuperB FDIRC, PANDA Barrel DIRC
 Radiator/light guide: narrow fused silica bars (radius/length flexible)
 Innovative 3-layer spherical lenses
 Compact fused silica prisms as expansion volumes
 Fast photon detection

mirrors
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hpDIRC Preliminary Baseline Design
Radiator bars:

 Barrel radius: 720 mm, 12 sectors
 10 long bars per sector, 4880 mm x 35 mm x 17 mm (L x W x T)
 Long bar: 4 bars, glued end-to-end
 Short bars made from highly polished synthetic fused silica
 Flat mirror on far end

Focusing optics: 
 Radiation-hard 3-layer spherical lens (sapphire or PbF2)

Expansion volume: 
 Solid fused silica prism: 24 x 36 x 30 cm3 (H x W x L)

Readout system: 
 MCP-PMT Sensors (e.g. Photek/Photonis/Incom)
 ASIC-based Electronics (e.g. EICROC)

Greg Kalicy: “DSC-hpDIRC” EICUG23 Fri 28/07
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Performance Evaluation with Simulations
Simplified view of one sectionGeant4 simulations includes:

 realistic material
 wavelength dependent refraction and absorption 
 mirror reflectivity
 photon transport efficiency  
 wavelength dependent photon detection efficiency
 detection time precision
 tracking resolution

Quantum efficiency of different MCP-PMTs
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Observables
 Photon yield
 Photon hit position
 Photon propagation time (~100 ps precision)

one pion one kaon

Examples for p = 6 GeV/c and θ = 30o

accumulated hit pattern for 5k pions
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Reconstruction Methods
Geometrical
 BaBar-like
 uses Look-Up Tables
 delivers Cherenkov angle per particle and Single Photon Resolution (useful for calibration)
 does not depend on precise time measurement 

Time Imaging 
 Belle II TOP-like
 uses Probability Density Functions 
 optimal use of position and time information

Neural Networks
 Under development                            
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Geometrical Reconstruction

Look Up Table generation:

10



EICUG | Warsaw 30.07.23 | Roman Dzhygadlo         /29

Geometrical Reconstruction

10

Reconstruction:
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Geometrical Reconstruction
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Reconstruction:
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Geometrical Reconstruction
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Reconstruction:
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Geometrical Reconstruction
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Reconstruction:
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Geometrical Reconstruction
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Reconstruction:
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Geometrical Reconstruction
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Reconstruction:
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Geometrical Reconstruction
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Reconstruction:
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Geometrical Reconstruction
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Reconstruction:
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Geometrical Reconstruction
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Reconstruction:
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Geometrical Reconstruction

10

Reconstruction:
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Geometrical Reconstruction
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Likelihood calculation:

signal combinatorial background
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Time Imaging

detection time

pion candidates kaon candidates 

PDFs of kaon and pion 
for given pixel

Probability density functions
 from data: best PID, requires a large amount of data in whole angular and momentum acceptance
 simulated: full Geant4 simulation of every possible particle type direction and momentum 
 analytical: fast, low memory footprint 

– initially developed for Belle II TOP (M. Staric, et al., Nucl. Inst. and Meth. A 595 (2008) 252)
– modified to account for spherical lens focusing (PDFs using LUT)

                                                                (R. Dzhygadlo et al. 2020 JINST 15 C09050, arXiv:2009.09927) 

TI likelihood:
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Neural Network Reconstruction

input to the neural network

 directly using binned time and channel id to provide PID 
 training relatively fast (for specific angles) 
 performance comparable with Time Imaging (for specific angles) 

CNN

max-pooling

flattening

e 
μ
π 
K 
p
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Expected Performance for hpDIRC design

track-by-track max. likelihood fit Time Imaging reconstruction
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Performance vs Tracking Resolution

Cherenkov angle resolution per particle π/K separation power at 6 GeV/c

Time Imaging

 high-precision tracking resolution is crucial for reaching best performance 

what we need from the tracking:
 magnitude
 direction (~0.5 mrad)
 impact position in the radiator (~mm)
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Start Time

 good precision for large number of photoelectrons and steep angles
 can be useful as TOF “stop time” if event T0 is known

with 100 ps detection 
time precision

resolution of the determined start time: 

 average time of Cherenkov light emission per particle can be obtained from difference between 
measured and calculated arrival time for each detected photon 
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Generic R&D for EIC Detector-2
EICGENRandD22EICGENRandD22

 Performance of hpDIRC baseline design good match to ePIC PID requirements but planned reuse 
of BaBar DIRC bars limits some design options

 xpDIRC for Detector-2 has no such constrains 
 EICGENRandD22 is aimed to investigate ways to improve on the ePIC hpDIRC design for Det-2

 extending the π/K limit to higher momenta
 reducing the material budget
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Generic R&D for EIC Detector-2
3-layer spherical lens

ideal focusing

Factors constraining performance:
 multiple scattering (MS) inside the bar 

(dominates at lower momentum)
 chromatic dispersion of angle and time
 aberrations of focusing system
 time precision
 photo-sensor’s pixel dimensions

π/K @ 30o, 100 ps time precision, 
1.7 mm pixel size, 0.5 mrad tracking

ideal focusing, monochromatic, no MS

performance for different tracking resolution

3 s.d.

3 s.d.

3 s.d.
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Multiple Scattering Mitigation

17 mm bar

10 mm bar
 performance gain at low momentum, especially for e/π
 make focusing less demanding
 reduce impact on EMCal performance

 thinner radiator

e/π @ 30o polar angle
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Multiple Scattering Mitigation
 thinner radiator
 post-DIRC tracking

GEANT4 for 0.2 GeV/c pion @ 30 degree
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Multiple Scattering Mitigation
 thinner radiator
 post-DIRC tracking
 Cherenkov ring fit (corrects the direction of the charged track)

Accumulated pattern for 100 pions @ 6 GeV/c:

works well for polar angles around 90o

60o polar angle90o polar angle
Cherenkov photons are distributed on a ring:
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Chromatic Dispersion Mitigation
 Applying wavelength cut (choosing PMT photocathode, inserting band filter)

Quantum efficiency of different MCP-PMTs

J.Schwiening, RICH 2007

time dispersion during propagation in the bar

dispersion of Cherenkov angle
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Chromatic Dispersion Mitigation
 Applying wavelength cut (choosing PMT, inserting band filter)
 Chromatic Dispersion Correction (using geometrical reconstruction)

Correlation between 
emission angle and  
propagation time: 

(calculated using average 
wavelength of 370 nm)

Example from GlueX DIRC data (timing precision ~0.8 ns) 
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r1

r2

Improving the Focusing System

π/K separation power for different radii

 fine-tuning radii of 3-layer spherical lens
 aspherical lenses

lens prototype

se
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]

6 GeV/c, 30o
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r1

r2

Improving the Focusing System

π/K separation power for different radii

 fine-tuning radii of 3-layer spherical lens
 aspherical lenses
 alternative focusing systems (Focusing DIRC NIMP A 876 (2017) 141–144)

lens prototype
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]

6 GeV/c, 30o
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Photo-sensor’s Pixel Dimensions
 Limited benefit from smaller pixel size

2-inch MCP-PMTs with 1.6 mm pixel size and 
small SiPM are already commercially available

ideal focusing

1.7 mm

3-layer spherical lens

3 mm

 INCOM Gen III HRPPD prototype

π/K @ 6 GeV/c@ 30o, 100 ps time precision, 
0.5 mrad tracking
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Alternative Designs

Geant4 geometry of
hybrid bar / plate option

 At RICH 2016 J. Va’vra showed the 
“ultimate fDIRC” concept

 narrow bars in “active area” ensure 
robust performance in multi-track events

 plate as a part of the expansion volume 
provides better angular resolution
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Alternative Designs
π/K @ 6 GeV/c, 100 ps time precision, 0.5 mrad tracking

 cylindrical lenses with a plate as 
expansion volume

26
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Alternative Designs
π/K @ 6 GeV/c, 100 ps time precision, 0.5 mrad tracking

 cylindrical lenses with a plate as 
expansion volume

best performance achieved for a hybrid design with the 
cylindrical lens placed between the narrow bars and a 
wide plate (50 mm thickness, can be optimized) 
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Alternative Designs
 cylindrical lenses with a plate as 

expansion volume

 spherical lenses with a plate as 
expansion volume and a smaller prism

(easier integration, smaller photo 
detector area → SiPM )
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Summary
 DIRCs are radially very compact, providing more space for calorimeters or tracking detectors
 Excellent performance, robust operation  
 Active and complex R&D (eRD14, eRD103, EICGENRandD22), 

applying advances in sensors, electronics, algorithms:
 investigating ways to improve on the ePIC hpDIRC design for Det-2 
 extending the π/K limit to higher momenta
 reducing the material budget
 mitigating chromatic dispersion, multiple scattering
 alternative design for focusing / expansion volume
 improving reconstruction algorithms (analytical PDFs for time imaging, neural networks) 
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Summary

   Thank you for the attention

 DIRCs are radially very compact, providing more space for calorimeters or tracking detectors
 Excellent performance, robust operation  
 Active and complex R&D (eRD14, eRD103, EICGENRandD22), 

applying advances in sensors, electronics, algorithms:
 investigating ways to improve on the ePIC hpDIRC design for Det-2 
 extending the π/K limit to higher momenta
 reducing the material budget
 mitigating chromatic dispersion, multiple scattering
 alternative design for focusing / expansion volume
 improving reconstruction algorithms (analytical PDFs for time imaging, neural networks) 
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