DIRC – Future Opportunities for EIC Detector-2

EICUG2023 Roman Dzhygadlo 🖬 🖬 🖬

- Overview
- DIRC concept / design
- Reconstruction methods
- Expected performance
- Generic R&D program

DIRCs Overview

- Radially compact (few cm)
- Excellent performance

- Robust operation
- Active R&D pushing performance limits

DIRCs Overview

- Radially compact (few cm)
- Excellent performance

- Robust operation
- Active R&D pushing performance limits

DIRC Concept

Detection of Internally Reflected Cherenkov Light

- Charged particle traversing radiator with refractive index ($n_1 \approx 1.47$) and $\beta = v/c > 1/n$ emits Cherenkov photons on cone with half opening angle $\cos \theta_c = 1/\beta n(\lambda)$
- Some photons are always totally internally reflected for β≈1 tracks
- Radiator and light guide: polished, long rectangular bar made from Synthetic Fused Silica ("Quartz")
- Proven to work
 (BaBar-DIRC: 3 s.d. for π/κ at 3.5 GeV/c)

Cherenkov Angle Resolution

Cherenkov track resolution:

$$\sigma_{\theta_c}(particle) \approx \sqrt{\left(\frac{\sigma_{\theta_c}(photon)}{\sqrt{N_{\gamma}}}\right)^2 + \sigma_{correlated}^2}$$

improve angular resolution of tracking system, mitigate multiple scattering impact use photon detectors better PDE, improve Cherenkov angle resolution per photon

$$\sigma_{\theta_c}(photon) \approx \sqrt{\sigma_{bar}^2 + \sigma_{pix}^2 + \sigma_{chron}^2}$$

BABAR DIRC $\sigma_{\theta_c}(photon) = 9.6 \text{ mrad}$

Limited in BABAR by:

- size of bar image
- size of PMT pixel
- chromaticity (n=n(λ))
- ~5.5 mrad

~4.1 mrad

~5.4 mrad -----

9.6 mrad

Improve for future DIRCs via:

- focusing optics
- smaller pixel size
- better time resolution
- ----- 5-6 mrad per photon \rightarrow

- ~ 1 mrad for hpDIRC
- < 1 mrad for xpDIRC

4/29

Generic Design

- Fast focusing DIRC, utilizing high-resolution 3D (x,y,t) reconstruction
- Design based on BaBar DIRC, R&D for SuperB FDIRC, PANDA Barrel DIRC
- Radiator/light guide: narrow fused silica bars (radius/length flexible)
- Innovative 3-layer spherical lenses
- Compact fused silica prisms as expansion volumes
- Fast photon detection

hpDIRC Preliminary Baseline Design

Greg Kalicy: "DSC-hpDIRC" EICUG23 Fri 28/07

Radiator bars:

- Barrel radius: 720 mm, 12 sectors
- 10 long bars per sector, 4880 mm x 35 mm x 17 mm (L x W x T)
- Long bar: 4 bars, glued end-to-end
- Short bars made from highly polished synthetic fused silica
- Flat mirror on far end

Focusing optics:

Radiation-hard 3-layer spherical lens (sapphire or PbF2)

Expansion volume:

Solid fused silica prism: 24 x 36 x 30 cm³ (H x W x L)

Readout system:

- MCP-PMT Sensors (e.g. Photek/Photonis/Incom)
- ASIC-based Electronics (e.g. EICROC)

Performance Evaluation with Simulations

Geant4 simulations includes:

- realistic material
- wavelength dependent refraction and absorption
- mirror reflectivity
- photon transport efficiency
- wavelength dependent photon detection efficiency
- detection time precision
- tracking resolution

EICUG | Warsaw 30.07.23 | Roman Dzhygadlo

- Photon yield
- Photon hit position
- Photon propagation time (~100 ps precision)
 - Examples for p = 6 GeV/c and θ = 30°

8/29

300 200

Reconstruction Methods

Geometrical

- BaBar-like
- uses Look-Up Tables
- delivers Cherenkov angle per particle and Single Photon Resolution (useful for calibration)
- does not depend on precise time measurement

Time Imaging

- Belle II TOP-like
- uses Probability Density Functions
- optimal use of position and time information

Neural Networks

Under development

Look Up Table generation:

10/29

number of photons: 1

10/29

EICUG | Warsaw 30.07.23 | Roman Dzhygadlo

10/29 📑 📑 🔳

EICUG | Warsaw 30.07.23 | Roman Dzhygadlo

10/29

number of photons: 12

number of photons: 74

EICUG | Warsaw 30.07.23 | Roman Dzhygadlo

10/29

number of photons: 74

Time Imaging

Probability density functions

- from data: best PID, requires a large amount of data in whole angular and momentum acceptance
- simulated: full Geant4 simulation of every possible particle type direction and momentum
- analytical: fast, low memory footprint
 - initially developed for Belle II TOP (M. Staric, et al., Nucl. Inst. and Meth. A 595 (2008) 252)
 - modified to account for spherical lens focusing (PDFs using LUT)

(R. Dzhygadlo et al. 2020 JINST 15 C09050, arXiv:2009.09927)

Neural Network Reconstruction

- directly using binned time and channel id to provide PID
- training relatively fast (for specific angles)
- performance comparable with Time Imaging (for specific angles)

input to the neural network

Expected Performance for hpDIRC design

13/29

Performance vs Tracking Resolution

$$\sigma_{\theta_{\rm C}}^{\rm track} = \sqrt{\left(\frac{\sigma_{\theta_{\rm C}}^{\rm photon}}{\sqrt{\rm N_{\rm photons}}}\right)^2 + (\sigma^{\rm correlated})^2}$$

what we need from the tracking:

- magnitude
- direction (~0.5 mrad)
- impact position in the radiator (~mm)

high-precision tracking resolution is crucial for reaching best performance

Start Time

average time of Cherenkov light emission per particle can be obtained from difference between measured and calculated arrival time for each detected photon

- good precision for large number of photoelectrons and steep angles
- can be useful as TOF "stop time" if event T₀ is known

Generic R&D for EIC Detector-2

EICGENRandD22

- Performance of hpDIRC baseline design good match to ePIC PID requirements but planned reuse of BaBar DIRC bars limits some design options
- xpDIRC for Detector-2 has no such constrains
- EICGENRandD22 is aimed to investigate ways to improve on the ePIC hpDIRC design for Det-2
 - extending the π/K limit to higher momenta
 - reducing the material budget

Generic R&D for EIC Detector-2

Factors constraining performance:

- multiple scattering (MS) inside the bar (dominates at lower momentum)
- chromatic dispersion of angle and time
- aberrations of focusing system
- time precision
- photo-sensor's pixel dimensions

 π/K @ 30°, 100 ps time precision, 1.7 mm pixel size, 0.5 mrad tracking

Multiple Scattering Mitigation

thinner radiator

- performance gain at low momentum, especially for e/π
- make focusing less demanding
- reduce impact on EMCal performance

Multiple Scattering Mitigation

- thinner radiator
- post-DIRC tracking

Multiple Scattering Mitigation

- thinner radiator
- post-DIRC tracking
- Cherenkov ring fit (corrects the direction of the charged track)

Accumulated pattern for 100 pions @ 6 GeV/c:

20/29

Chromatic Dispersion Mitigation

Applying wavelength cut (choosing PMT photocathode, inserting band filter)

Chromatic Dispersion Mitigation

- Applying wavelength cut (choosing PMT, inserting band filter)
- Chromatic Dispersion Correction (using geometrical reconstruction)

Example from GlueX DIRC data (timing precision ~0.8 ns)

Correlation between emission angle and propagation time:

(calculated using average wavelength of 370 nm)

Improving the Focusing System

- fine-tuning radii of 3-layer spherical lens
- aspherical lenses

Improving the Focusing System

- fine-tuning radii of 3-layer spherical lens
- aspherical lenses
- alternative focusing systems (Focusing DIRC NIMP A 876 (2017) 141-144)

Photo-sensor's Pixel Dimensions

Limited benefit from smaller pixel size

 $\pi/K @ 6 \text{ GeV/c} @ 30^\circ$, 100 ps time precision,

2-inch MCP-PMTs with 1.6 mm pixel size and small SiPM are already commercially available

INCOM Gen III HRPPD prototype

- At RICH 2016 J. Va'vra showed the "ultimate fDIRC" concept
- narrow bars in "active area" ensure robust performance in multi-track events
- plate as a part of the expansion volume provides better angular resolution

 cylindrical lenses with a plate as expansion volume

 $\pi/K @ 6 \text{ GeV/c}$, 100 ps time precision, 0.5 mrad tracking

 cylindrical lenses with a plate as expansion volume

best performance achieved for a hybrid design with the cylindrical lens placed between the narrow bars and a wide plate (50 mm thickness, can be optimized) $\pi/K @ 6 \text{ GeV/c}$, 100 ps time precision, 0.5 mrad tracking

 cylindrical lenses with a plate as expansion volume

 spherical lenses with a plate as expansion volume and a smaller prism

(easier integration, smaller photo detector area \rightarrow SiPM)

Summary

- DIRCs are radially very compact, providing more space for calorimeters or tracking detectors
- Excellent performance, robust operation
- Active and complex R&D (eRD14, eRD103, EICGENRandD22), applying advances in sensors, electronics, algorithms:
 - investigating ways to improve on the ePIC hpDIRC design for Det-2
 - extending the π/K limit to higher momenta
 - reducing the material budget
 - mitigating chromatic dispersion, multiple scattering
 - alternative design for focusing / expansion volume
 - improving reconstruction algorithms (analytical PDFs for time imaging, neural networks)

Summary

- DIRCs are radially very compact, providing more space for calorimeters or tracking detectors
- Excellent performance, robust operation
- Active and complex R&D (eRD14, eRD103, EICGENRandD22), applying advances in sensors, electronics, algorithms:
 - investigating ways to improve on the ePIC hpDIRC design for Det-2
 - extending the π/K limit to higher momenta
 - reducing the material budget
 - mitigating chromatic dispersion, multiple scattering
 - alternative design for focusing / expansion volume
 - improving reconstruction algorithms (analytical PDFs for time imaging, neural networks)

Thank you for the attention

