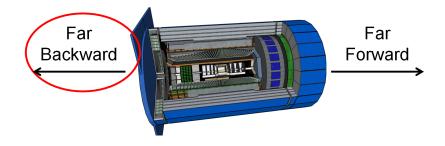


ePIC Detector


• Our "normal" picture of ePIC is something like this

ePIC Detector

ePIC Detector

Far Backward Region

- Relatively simple, but very important, set of detectors systems in this region
 - Luminosity monitors
 - Low Q² tagger

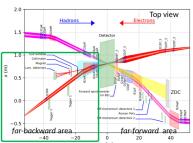


Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023

Luminosity monitoring systems for ePIC

Far Backward - Luminosity Monitors

- Luminosity measurements provide the required normalisation for all physics studies
 - Absolute cross sections
 - Combining run periods
 - Asymmetry measurements
 - Relative luminosity of different bunch crossings
- Require accuracy on the order of ~1%

Relative luminosity $> 10^{-4}$ precision

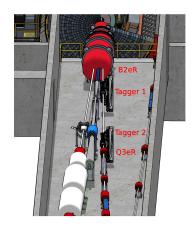
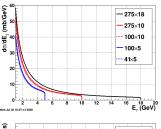
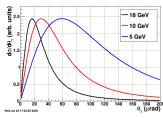


Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023


Luminosity Monitors - Measurements

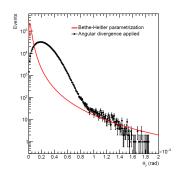

 Use bremsstrahlung process to measure luminosity

$$e + p \rightarrow e + p + \gamma$$

 $e + A \rightarrow e + A + \gamma$

- \bullet σ known precisely from QED
- γ strongly peaked in forward (e^- beam) direction
 - Beam divergence has a large effect $\sim 200 \mu rad$ at IP6!
- Two luminosity monitor systems
 - Direct Photon Detector (High rate calorimeter)
 - Pair Spectrometer

Figures - EIC Yellow Report - Section 11.7.1, p575


Luminosity Monitors - Measurements

 Use bremsstrahlung process to measure luminosity

$$e + p \rightarrow e + p + \gamma$$

 $e + A \rightarrow e + A + \gamma$

- \bullet σ known precisely from QED
- γ strongly peaked in forward (e^- beam) direction
 - Beam divergence has a large effect $\sim 200 \mu rad$ at IP6!
- Two luminosity monitor systems
 - Direct Photon Detector (High rate calorimeter)
 - Pair Spectrometer

Figure - EIC Yellow Report - Section 11.7.1, p576

Direct Photon Detector

- In principle, direct bremmstrahlung photon measurement straightforward
- Could simply count photons above some energy cutoff
- Only possible at low luminosities
- At EIC luminosity, expect large number of photons
- At $\mathcal{L} \approx 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$, expect about 23 hard photons per bunch crossing
- Two separate direct photon detectors proposed
 - One with excellent energy resolution, used only for special luminosity runs at low $\mathcal L$
 - \circ One capable of withstanding > 1 GHz rates, used for monitoring during nominal running
- DPD and PS highly complementary detectors, two independent measurements

Direct Photon Detector

- Use thick absorbers/filters to attenuate synchrotron radiation
- Studies underway to quantify dosage for photon detectors
- Latest design, fiber based calorimeter
- See talk by Krzysztof Piotrzkowski at 10:25 on 29/07/23 for more on the DPD/HRC

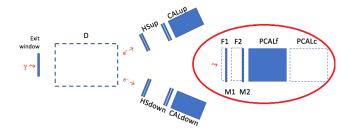


Figure - J. Nam, Temple University, ePIC Collaboration meeting January 2023

Pair Spectrometer

- Pair spectrometer outside of main synchrotron radiation fan
 5σ gap
- Some bremmstrahlung photons converted to e^+e^- pairs

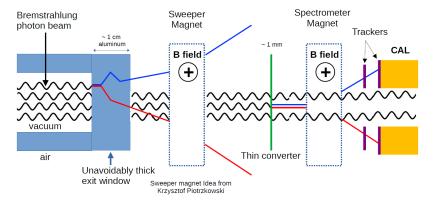


Figure - D. Gangadharan, University of Houston

Pair Spectrometer

Conversion foil within vacuum pipe, between magnets

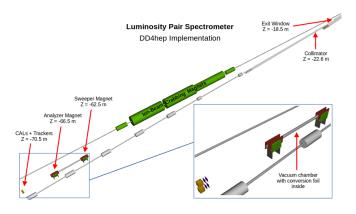


Figure - D. Gangadharan, University of Houston

Pair Spectrometer - Overview

- \bullet Based upon recent feedback from magnet designers, 1 ${\rm Tm}$ fields and 15 ${\rm cm}$ bore diameter possible
- ullet New baseline design with sweeper magnet \sim 65 ${
 m m}$ from IP
- See Dhevan's talk at 10:45 on 29/07/23 for more on this updated design!

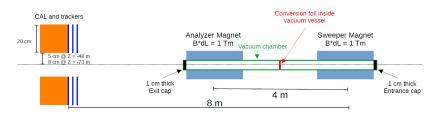
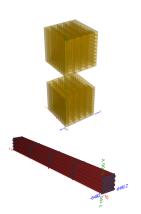



Figure - D. Gangadharan, University of Houston

Pair Spectrometer - Calorimeters, WSciFi

- Updated design tungsten scintillating fiber calorimeter(WSciFi)
 - W powder and epoxy with embedded fiber grid
- Tweak volumetric ratio between W/SciFi to adjust many parameters
 - Radiation length
 - Molière radius
 - Sampling fraction
 - Energy resolution
- Studying new XY fiber design
 - 3D shower profile possible
 - Potential AI/ML applications

Figures - A. Giri, University of Houston

 See Aranya Giri's talk at 11:40 on 23/07/24 for more info and the latest on simulations!

Pair Spectrometer - Calorimeters, WSciFi

- Preliminary design ideas based upon sPHENIX calorimeters
- Recent R&D work by O.Tsai
 - o doi:10.1088/1742-6596/404/1/012023
- Learn from this for ePIC lumical construction

 Beyond luminosity monitoring, FB detectors needed for some physics channels

Figure - doi:10.1088/1742-6596/404/1/012023

Far backward physics, quick examples

Far Backwards - Physics

- Far backward detectors also enable some unique physics measurements
- Meson spectroscopy
 - \circ J/ ψ , XY etc
- Example final state

•
$$\mathrm{J}/\psi + \pi^+ + \pi^- + \mathrm{e'}$$
 and nucleons

- Events at both low Q² and t
- $\int \mathcal{L}$ at EIC very high
 - Study rare exclusive processes, not accessible at HERA

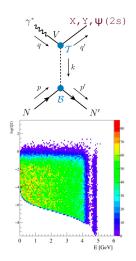
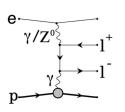



Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023

Far Backwards - Physics

- Dilepton production channels
 - Utilises FF and FB detectors

• FB taggers detect e'
•
$$\pi - \theta_0 < 1$$
 mrad

- Scattered proton in FF
 - $\theta_p < 6 \text{ mrad}$
- All lepton pairs, e^{\pm} , μ^{\pm} , τ^{\pm} can reach central detector
- Background for J/ψ or v production
- \circ μ^{\pm} sensitive to proton charge radius
- Opportunity for data-driven calibrations with two-photon exclusive processes

Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023

ePIC Low Q^2 Tagger

Low Q^2 Tagger - Overview/Positioning

- Two tagger detectors along outgoing e⁻ beam pipe
- Roughly -20 m and -36 m from IP

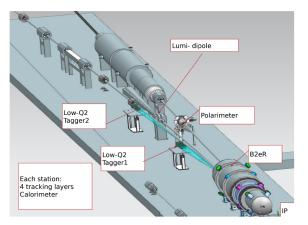
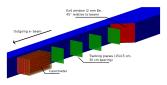
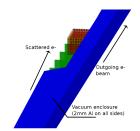
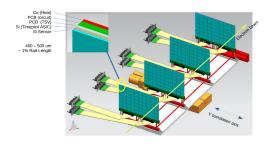




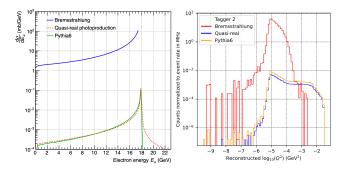
Figure - J. Adam, CTU Prague, ePIC Collaboration meeting July 2023

Low Q^2 Tagger

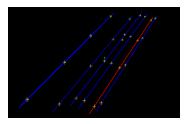
- Quasi-real tagging (low Q^2), $\theta_e < 10 \text{ mrad}$
 - $Q^2 \sim 10^{-2} \text{ GeV}^2$
- Detector goals
 - Large acceptance (> 10%)
 - \circ Good energy resolution $\leqslant 1\%$
 - Reconstruction of scattering plane (polarisation)
- Two tagger modules
- Timepix4+SPIDR4 detectors
- Investigating neural networks for kinematic reconstruction



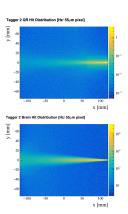
Figures - J. Adam, CTU Prague, ePIC Collaboration meeting July 2023


Low Q^2 Tagger - Detail

- \circ 4 tracking layers per station, \sim 30 cm apart
- Timepix4 + Si hybrids, 55x55 μ m pixels, 448x512 pixels per sensor (6.94 cm^2)
- 2 ns timing resolution
- ullet Singles rate capability high, > 20 kHz per 55 μm pixel


Low Q^2 Tagger - Quasi Real Photoproduction

- Clean photoproduction signal over a limited region
 - $10^{-3} < Q^2 < 10^{-1} (\text{GeV/c}^2)$
- Large background from Bethe-Heitler bremsstrahlung
 - High event rates
 - Mitigate with good tracking and Q^2 resolution



Low Q^2 Tagger - Reconstruction

- Typical bunch crossings at 18x275
 - \sim 12 electrons
 - \circ ~7 accepted by tagger 2
 - 95% reconstruction efficiency

- Quasi-real e⁻ scattering event amongst bremsstrahlung e⁻
- Max rate per pixel ~20 kHz

Figures - S.Gardner, University of Glasgow, ePIC Collaboration meeting January 2023

Low Q^2 Tagger - Q^2 Reconstruction

- Two different ML algorithms give similar results
- Reconstruct tracks with e' kinematics
- Q^2 from e' energy and θ
- Compare to truth info in taggers and central detector

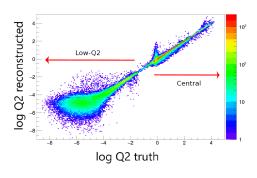
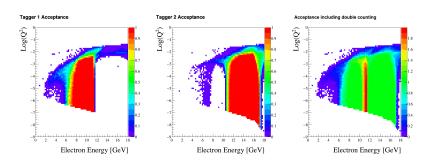
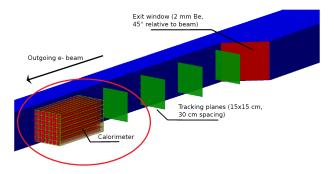



Figure - J. Adam, CTU Prague, ePIC Collaboration meeting July 2023


Low Q^2 Tagger - Acceptance

- Acceptance for each tagger station
- Overall acceptance, including double counting region
 - Double counting region only possible if both taggers in same vacuum
 - Also requires no calorimeter
 - Gap in acceptance if double counting region not available

Low Q^2 Tagger - Calorimeter

- For ePIC, calorimeter still in baseline design
 - Being costed
- Some open questions/challenges
 - Needs to handle very high rates
 - Taggers already provide very high resolution
 - Could degrade if exit windows too thick.

So, what could detector 2 do differently?

Detector 2 - Low Q^2 Tagger - Ideas/Options

- Include the low Q2 tagger calorimeter
 - "Distinctive" if ePIC drops the low Q^2 tagger calorimeters
 - Need to decide if this is "worth" doing or not in either case
- Decision between in/out of vacuum is a big one
 - Det2 could deliberately go the other way
- Try to bridge the acceptance gap in e' energy and Q^2 reach between central detector and low Q^2 tagger
 - More on this in the next talk!
- Acceptance gap is consequence of the magnet configuration and arrangement
 - Low energy e^- are bent into the dipoles
 - Low(ish) $Q^2 e^-$ go into the beampipe
- Broad solutions to this include
 - A "B0" equivalent, a detectors inside the magnet
 - A beampipe with a significantly larger radius
 - Neither option is straightforward

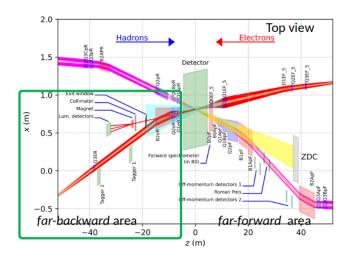
Detector 2 - Low Q^2 Tagger - Ideas/Options

- To improve high energy acceptance, get detectors as close to the beam as possible
 - Challenging! Radiation environment, vacuum, detector access concerns...
 - If this is worked in early, more likely
 - Integrated active/passive radiation monitoring critical
- For some physics channels, filling the acceptance gap between Q^2 0.1 and 0.01 is very important
- For others channels, getting lots of events with energies as close to the beam energy is more crucial
 - Lots of events near threshold
 - ullet These events have zero energy γ
 - This would again, likely mean detectors within the beamline vacuum

Summary

- Far backward detectors vital for luminosity monitoring and for some physics measurements
- ePIC luminosity monitoring systems in advanced stage of development
 - Pair spectrometer R&D testing very soon!
 - Need complementary independent detectors at IP8?
- ePIC low Q^2 tagger design progressing
 - Calorimeter or not?
 - In or out of vacuum?
 - Exit window materials?
- Prospects for detector 2 strongly dependent upon final IP design
 - Change the shape of the beampipe?
 - Detector in beampipe?
 - Taggers closer to beampipe?

Thanks for listening, any questions?

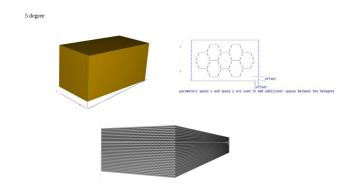


Science and Technology Facilities Council

stephen.kay@york.ac.uk

IP6 Overview

Luminosity Requirements and Systematics

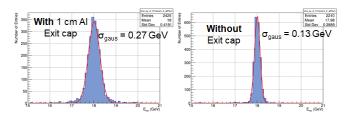

- Yellow Report Requirements
 - \circ \sim 1% uncertainty for absolute luminosity
 - Less than 10^{-4} for relative luminosity
- Compare to Zeus lumi systematics

Component	Sub-Component systematics	ePIC Improvements
Acceptance (1.6%: Total)	1.0%: Aperture and detector alignment	So obstruction free aperture. Low lumi runs with coincidences of low-Q ² tagger and pair spec
	1.2%: X-position of photon beam	
Photon conversion in exit window (0.7%: Total)	0.1%: Thickness	
	0.3%: chemical composition	
	0.6%: photon conversion cross section	
RMS-cut correction (0.5%: Total)	Rejection of proton gas interactions	Greatly reduced for ePIC – trackers with good pointing resolution
Total	1.8%	

• With reductions, 1% absolute lumi precision within reach

Luminosity Requirements and Systematics

- Latest design spaghetti calorimeter (fiber based)
- Inclined to avoid events directly hitting (and propagating along) direction of fiber


Figures - Yasir Ali, AGH UST, Krakow (modified)

Pair Spectrometer - General Requirements

- Exit window and conversion foils
 - Well known composition and thickness of exit window and conversion foils
 - Foil needs to withstand heat load!
- Sweeper and analyser magnets
 - ullet $BdLpprox 1~{
 m Tm}$, compact system, $\sim 15~{
 m cm}$ bore diameter
 - Allows placement far from central region
 - Small fringe fields
 - Good vacuum for minimal air conversions
- Calorimeter
 - $17\%/\sqrt{E}$ energy resolution sufficient
 - Based upon ZEUS experience
 - Segmented readout, disentangle pileup
 - $\circ \sim$ ns timing resolution, bunch-by bunch ${\cal L}$

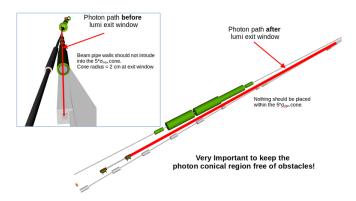
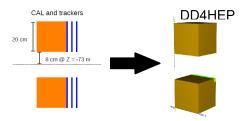
Pair Spectrometer - Trackers

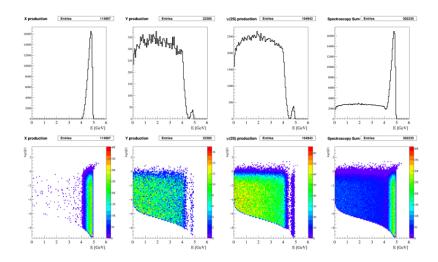
- \circ Trackers could be used to obtain $\sim 1\%$ energy resolution
- Resolution strongly affected by end cap thickness and material
- Excellent tracking possible
 - Excellent energy resolution
 - Excellent pointing resolution
- Still need to choose technology, same as Low Q^2 tagger

Figures - D. Gangadharan, University of Houston

Pair Spectrometer

- Conversions in air before pipe, negligible effect
 - < 0.02% contribution to systematics


Figure - D. Gangadharan, University of Houston

Pair Spectrometer - Calorimeters

- Calorimeter is fairly simple design
 - Two $\sim 20 {
 m cm}^3$ calorimeters
 - Vertically separated from direct γ , $\pm 5\sigma$
- Current <u>baseline</u> design in ePIC DD4HEP simulation uses segmented PbWO₄ calorimeters
- See talk by Aranya Giri at 11:40 on 23/07/24 for more info and the latest on simulations!

Far Backwards - Physics, Spectroscopy Distributions

Figures - D. Glazier, University of Glasgow