The Deep Exclusive Meson Production as a probe of the Λ^0 polarization at the EIC

Kong Tu, BNL EIC 2nd detector workshop, July 2023

Zhoudunming (Kong) Tu (2023), manuscript in preparation

A big question and a longtime puzzle

- Discovered in the mid 1970s, Ahyperon polarization was observed in unpolarized proton-Beryllium collisions.
- ~ A 50-year problem that still not fully understood.
- Despite the mystery, Λ-hyperon's self-analyzing weak decay became an excellent experimental probe of spin observables.

FIG. 3. Three components and magnitude of the $\Lambda^0 \rightarrow p + \pi^-$ asymmetry as a function of Λ^0 transverse momentum.

This was the beginning of the `spin physics` in high energy scatterings.

Production plane

collisions.

* only in heavy-ion AA collisions, people think it's of different origin.

Production plane

Example: HERMES experiment of ep deep inelastic scattering (DIS).

 Λ^0 -polarization has been observed in p+p, NC/CC DIS, e+e, p+A, and AA* collisions.

* only in heavy-ion AA collisions, people think it's of different origin.

Parton spin direction

Example: COMPASS experiment of mu+p deep inelastic scattering (DIS)

In Λ rest frame:

 $\frac{dN}{d\Omega} = \frac{N_{tot}}{4\pi} \left(1 + \alpha \vec{P} \vec{k} \right)$

 $\alpha = +(-)0.642 \pm 0.013 - \Lambda (\bar{\Lambda})$ decay parameter, \vec{P} - polarization vector,

 \vec{k} – unit vector along the proton momentum, x-axis align with the virtual photon direction.

 Λ^0 polarization is to measure the longitudinal spin transfer from lepton/photon or nucleon to quark.

No signal has been observed.

Production plane

- TMD polarizing FFs seem to explain the e+e- data (Gamberg et al 2021).
- Thomas presession mechanism (*Degrand and Miettinen 1981*): valance quarks and k_T of the strange quark via recombination.
- Other models, including single-pion exchange (*Tornqvist and Sofer 1991*), resonance model with interference (*Jeseph and Sofer 1980*), etc.

Final-state effects: polarization generated by hadronisation

Production plane

- TMD polarizing FFs seem to explain the e+e- data (Gamberg et al 2021).
- Thomas presession mechanism (Degrand and Miettinen 1981): valance quarks and k_T of the strange quark via recombination.
- Other models, including single-pion exchange (*Tornqvist and Sofer 1991*), resonance model with interference (*Jeseph and Sofer 1980*), etc.

Final-state effects: polarization generated by hadronisation

Parton spin direction

Measurement ~ helicity \otimes partonic scattering cross section \otimes pFFs

 $d\Delta\sigma^{\Lambda} = \sum \int dx_a dx_b dz \Delta f_a(x_a) f_b(x_b) \otimes \Delta\sigma(ab \to cd) \otimes \Delta D^{\Lambda}(z)$ helicity distribution pQCD calculable polarized FF

- Some argued: polarized FF is too small, so no signal is observed. Similar for transversity.
- ≻ ...
- Some argued: Feed-down dilution.

Final-state effects: polarization NOT seen due to hadronisation

Deep Exclusive Meson Production (DEMP)

An exclusive reaction channel to study the meson structure and GPDs.

- Sensitive to the QCD confinement.
- Complementary to the Form Factor measurements.
- Three-dimensional structures, e.g., orbital angular momentum, of the Pion and Kaon.

See [T. Horn 2017] and [G. Huber's talk]

Deep Exclusive Meson Production (DEMP)

An exclusive reaction channel to study the meson structure and GPDs.

- Sensitive to the QCD confinement.
- Complementary to the Form Factor measurements.
- Three-dimensional structures, e.g., orbital angular momentum, of the Pion and Kaon.

```
See [T. Horn 2017] and [G. Huber's talk]
```

This talk, I focus on:

 $e+p \rightarrow e' + K^+ + \Lambda^0$

with polarization observables.

Why DEMP?

This measurement tests an extreme case:

- 1. x_F ~ 1.0
- 2. Exclusive final-states, spin can be counted.
- 3. ~ No FFs involved.

Which direction Λ^0 would be polarized? \vec{s}_1 or \vec{S}_{beam} ? we force $\vec{s}_1 \cdot \vec{S}_{\text{beam}} = 0$ (perpendicular)

Expectation 1 – large P_{Λ} w.r.t production plane

*Sign of polarization depends on definition of plane. For all fixed target, it is `beam X lambda` and it matters if it is proton or photon projectile.

11

12

Expectation 2: What to expect for P_{Λ} w.r.t \vec{S}_{beam} ?

STAR data on proton target; similar for transverse spin transfer

Despite expectation of a positive P_{Λ} signal, it has never been observed.

- We don't know how much s quark (could) carries the spin of Λ. (some say 100%, some 60%, and some 0%)
- 2. In DIS or pp, **feed-down** from heavier particles could dilute signal, if there's any.
- **3. Fragmentation** seems to be playing an important role.

Measurement ~ helicity \otimes partonic scattering cross section \otimes pFFs

Eur.Phys.J.C64:171–179,2009

ect for P_{Λ} w.r.t \vec{S}_{beam} ?

Similarly found by COMPASS, but to make things cworse of signal for antilambda showed upbeen observed.

- We don't know how much s quark (could) carries the spin of Λ.
- 2. In DIS or pp, **feed-down** from heavier particles could dilute signal, if there's any.
- **3. Fragmentation** seems to be playing an important role.

Expectation 2: large P_{Λ} w.r.t \vec{S}_{beam}

TABLE VIII: First and second moments of various helicity distributions in the measured range at a scale of $Q_0^2 = 2.5 \text{ GeV}^2$.

	Moments in measured range
Δu	$0.601 \pm 0.039 \pm 0.049$
$\Delta ar{u}$	$-0.002\pm0.036\pm0.023$
Δd	$-0.226 \pm 0.039 \pm 0.050$
$\Delta ar{d}$	$-0.054 \pm 0.033 \pm 0.011$
Δs	$0.028 \pm 0.033 \pm 0.009$
$\Delta u + \Delta \bar{u}$	$0.599 \pm 0.022 \pm 0.065$
$\Delta d + \Delta \bar{d}$	$-0.280\pm0.026\pm0.057$
$\Delta u_{ m v}$	$0.603 \pm 0.071 \pm 0.040$
$\Delta d_{\rm v}$	$-0.172\pm0.068\pm0.045$
$\Delta \bar{u} - \Delta \bar{d}$	$0.048 \pm 0.057 \pm 0.028$
$\Delta\Sigma$	$0.347 \pm 0.024 \pm 0.066$
Δq_3	$0.880 \pm 0.045 \pm 0.107$
Δq_8	$0.262 \pm 0.078 \pm 0.045$

HERMES data (Phys.Rev.D71:012003,2005)

- Up quarks in proton accounts for 60% of the total spin. (down quark accounts negatively, so total 30% - $\Delta\Sigma$)
- Knocking out one up quark is naively expected to be half of it. So 30% of the total spin.
- If the proton is longitudinally polarized ~ 70%, then the remaining polarization (the Λ^0) is expected to be 70%*70% ~ 50% w.r.t the beam polarization direction.

Expectations with $\vec{s}_1 \cdot \vec{S}_{\text{beam}} = 0$:

- Expectation 1: large polarization w.r.t production plane \vec{s}_1 [*final-state effect*]
- Expectation 2: large polarization w.r.t Λ^0 momentum or \vec{S}_{beam} [*initial-state effect*]

Expectations with $\vec{s}_1 \cdot \vec{S}_{\text{beam}} = 0$:

- Expectation 1: large polarization w.r.t production plane \vec{s}_1 [*final-state effect*]
- Expectation 2: large polarization w.r.t Λ^0 momentum or \vec{S}_{beam} [*initial-state effect*]

Further questions: Energy & (Q²,x) dependence?

- Does the energy of the beam change the picture / result?
- How about (Q²,x)?
- Low-x strange quark vs high-x?

ePIC detector

(A. Jentsch, BNL)

An interesting channel that we need to detect exactly a Pion, Kaon, and Proton in the forward region, where momentum and position resolution needs to be good for proton – this is not easy

- Lowest energy (41 GeV/c) seems possible
- Highest energy (275 GeV/c) seems very difficult.
- Can second detector at the EIC focus more on forward direction with higher energy Λ⁰ ?
- Resolution of proton daughter reconstruction, beam effects, etc. are important.

Summary

- The DEMP has been proposed to be a probe to study the spin transfer at the EIC and might shine new lights on the 50 years of Λ^0 polarization puzzle.
 - Expectation 1: large Λ^0 polarization w.r.t production plane;
 - Expectation 2: large Λ^0 polarization w.r.t beam (parton) polarization;

- ePIC detector can only do low proton energy. 2nd EIC detector would be helpful and focus on forward region with higher energy Lambda.
- EIC is unique because Jlab can only use the missing mass without tagging the Lambda.

Backup

Let's take a look at the picture

(a)

SIDIS looks at one (leading) parton and the idea is:

- Polarization of nucleon (transfer →) polarization of parton, e.g., u/d/s quark.
- Strange (or u/d) quark carries (some of) the spin and fragment/hadronize.
- Measure the final-state hadron, Λ.

What we understood based on the data is: **this** process needs to undergo fragmentation, which by itself is complicated. SIDIS looks at one (leading) parton and the idea is:

- Polarization of nucleon (transfer →) polarization of parton, e.g., u/d/s quark.
- Strange (or u/d) quark carries (some of) the spin and fragment/hadronize.
- Measure the final-state hadron, Λ .

What we understood based on the data is: this process needs to undergo fragmentation, which by itself is complicated.

z (hadron-going)