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Motivating questions

(JCan we use high-energy electron-heavy nucleus scattering at the
future EIC to produce nuclear fragments, including exotic nuclei (i.e.
undiscovered rare isotopes)?

(JCan we go on to detect and correctly identify the produced nuclei?
Can we also study the level structure of the nuclei by detecting
gamma rays? What requirements does this place on the far-forward
detection area?

If we can produce, detect, and identify nuclear fragments at the EIC,
how can these results complement the work being done at dedicated
rare isotope facilities?



Nuclear fragment production at the EIC

Incoming GeV electron
beam and 100 GeV/nucleon
heavy ion beam

t=0
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Nuclear fragment production at the EIC

Hard scattering and
intra-nuclear
cascade

e
8
o
Incoming GeV electron Excited intermediate
beam and 100 GeV/nucleon nucleus (i.e. residual
heavy ion beam nucleus)
t=0 t=102?s
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Nuclear fragment production at the EIC

Hard scattering and High-energy
intra-nuclear fission or

cascade evaporation :":é
@
v

e
g
o
Incoming GeV electron Excited intermediate
beam and 100 GeV/nucleon nucleus (i.e. residual Fission or
heavy ion beam nucleus) evaporation
products
t=0 t=102%s t=1020-10Ys
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Nuclear fragment production at the EIC

Hard scattering and High-energy Gamma de-excitation

intra-nuclear fission or o o
cascade evaporation n.:‘é: 5:&
¢ 0
v

e
8
o
Incoming GeV electron Excited intermediate
beam and 100 GeV/nucleon nucleus (i.e. residual Fission or Isotopes in ground
heavy ion beam nUCIEUS) evaporatlon state and gammas
products
t=0 t=10%s t=102°-10"s t=101s

7/31/2023 7



Nuclear fragment production at the EIC

Hard scattering and High-energy Gamma de-excitation Decay of radioactive
intra-nuclear fission or isotopes

cascade evaporation :&
@

e
- Emn .‘
e 2k ﬁ ‘
Incoming GeV electron Excited intermediate
beam and 1qo GeV/nucleon nucleus (i.e. residual FISSIorltt.JI‘n Isotopes in ground Isotopes after
heavy ion beam nucleus) evaporatio state and gammas radioactive decay
products
t=0 t=102?s t=1020-10"s t=101s t = ? — never (stable)
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Where the EIC can potentially contribute

1. The ground-state isotopes will be at high energy (~100
GeV/nucleon). The time dilation effect will allow for Isotopes in ground
possible direct detection for lifetimes >1 ns. state and gammas

2. Many of the de-excitation gammas will be Lorentz upshifted
to energies much larger than background photons present
in the detector area. This will allow for clean
detection/identification of these gamma rays, which can be
used to study the level-structure of the isotopes. ’



Where the EIC can potentially contribute — specifics

Reaction mechanism

Production of new isotopes

Nuclear structure

Hadron formation time

Excitation energy distribution. Improvement of the
fast Abrasion-Fission model and a better
understanding of the reaction mechanism.
Simultaneous detection of two fission fragments and
no target contribution to fragment kinematics.
Improvement of production models.

Production of new neutron-deficient isotopes in the
Z=89-94 range. Advantages over RIB facilities due to
short flight time and possibly higher production cross
section.

Coincidence measurement of isotopes and de-
excitation gammas.

Sensitivity of residual nucleus excitation energy
distribution to formation time parameters.



Incoming GeV electron
beam and 100 GeV/nucleon
heavy ion beam

7/31/2023

How can we study this?

Hard scattering and
intra-nuclear

cascade

Excited intermediate
nucleus (i.e. residual
nucleus)

Step 1

The hard scattering (primary interaction) and the intra-
nuclear cascade which follows are modelled using the
Benchmark eA Generator for Leptoproduction — BeAGLE
(Phys. Rev. D 106, 012007). This leaves us with the
residual nucleus in an excited state.

A hybrid model consisting of
DPMJet and PYTHIA with
nPDF EPS09.

Nuclear geometry by
DPMJet and nPDF provided
by EPS09.

Parton level interaction and

jet fragmentation completed

in PYTHIA.

Nuclear evaporation ( gamma
dexcitation/nuclear fission/fermi
break up ) treated by DPMJet

Energy loss effect from routine by
Salgado&Wiedemann to simulate the
nuclear fragmentation effect in cold
nuclear matter
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How can we study this?

High-energy Gamma de-excitation
fission or

H -e‘ -'}‘
evaporation <® o®
&"; ® ¥
.5. 3 ’

Excited intermediate

nucleus (i.e. residual Fission or Isotopes in ground
nucleus) evaporation state and gammas
products

7/31/2023

Step 2

For each event, the residual nucleus with a given A, Z,
and excitation energy is then handed over to either
FLUKA (Annals of Nuclear Energy 82, 10-18 (2015)) or
ABLAO7 for decay (evaporation or fission) followed by
gamma de-excitation. We are left with the decay
products of the residual nucleus.

FLUKA is used extensively in high-energy physics but has
not been used for the study of rare isotope production.
ABLAOQY7 is used extensively in the rare isotope
community — and is the second part of the abrasion-
ablation code ABRABLAO7. We run the BeAGLE events
though both these codes and study the results.

12


https://www-pub.iaea.org/MTCD/Publications/PDF/P1433_CD/datasets/presentations/SM-SR-04.pdf

Production of the residual nucleus

Hard scattering and

AUsing BeAGLE, we simulate an 18 GeV intra-nuclear
electron beam colliding with a 110 cascade
GeV/nucleon 238U or 298Pb beam.

dWe then study the excited residual
nucleus that is created following the Y
hard scattering and intra-nuclear
cascade.

dThe only relevant quantities are the A

and Z and excitation energy of the Excited intermediate
residual nucleus. (The residual nucleus nucleus(l.le. r(=;5|dual
nucieus

is assumed to have zero angular
momentum.)
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Production of the residual nucleus

JWe find that the production of
the residual nucleus in BeAGLE
manifests as a very simple
abrasion model:



Production of the residual nucleus

JWe find that the production of
the residual nucleus in BeAGLE
manifests as a very simple
abrasion model:

» The excitation energy shows a
linear dependence on the number
of abraded nucleons.

We plot the statistical mean and
standard deviation here.

¥2 / ndf 959.8 /25

p0 21.09 £ 0.07868
Number of abraded
nucleons:

dA = Apeam — Ares

Excitation energy: E*

O °

20 25 30

x2 / ndf 108.7 /24

p0 11.91+ 1.334

p1 16.99 + 0.3631

238
U beam

1 | 1 L I L
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Production of the residual nucleus

Excitation Energy Distribution for Z=88, A=230 with dN =4 and dZ = 4 Bin_Number: 1 Sum: 42301

1= 5082
0=032

Amp = 42300.5
X Log = 1.866

Number of abraded
nucleons:

dWe find that the production of

250

Counts

the residual nucleus in BeAGLE §

= EED

= dA = Apeam — Ares

100
400 600 BOO 1000
Energy Bins (MeV)

manifests as a very simple |
abrasion model: = -

Excitation energy:

X’ LogN= 1.866
. meanT = 21,634
10 Amp EED = 38923.346

»The excitation energy shows a
linear dependence on the number
of abraded nucleons. b

Energy Bins (MeV)

Counts
=

LogNorm Median / dA

Sum of Median Column Labels |-¥

Row Labels iT 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
. . . . 92 21.9/23.4 241 23.4 244 243 229 229 231 22.9 22.9 226 222 21.5 20.8 238 U b
The E* distribution at fixed dA may be 51 20.4(23.7 22.0 22.6 23.3 23.1 22.1 22.4 22.2 22.0 217 216 21.2 20.9 203 19.3 ] eam
50 211 20.1 20.2/22.7 224 2255 22.1 21.4 215 215 215 213 21.2 20.8 206 20.1 19.7 18.9 18.2
. . . . . 89 221 220 211 21.0 223 214 216 211 21.3 212 21.0 20.9 20.7 20.4 202 19.8 19.4 18.8 18.7
desc rl bed Wlth a Log-normal d IStrI butlon’ 88 20.4 21.6 22.3 21.5 22.0 21.7 21.3 21.0 21.0 20.9 20.8 20.7 20.6 20.3 20.1 19.8 19.5 19.2 19.8
. . 87 21.5 22.2 20.9 21.2 21.3 21.3 20.8 21.0 20.9 20.6 20.4 20.4 20.4 20.0 19.9 19.6 19.4 19.3 19.5
with some dependence the relative number 86 19.7 203 213 219 213 20.9 21.0 20.7 20.5 203 20.5 202 20.1 19.8 198 19.5 19.4 19.1 19.7
85 20.4 20.4 217 20.7 213 21.2 20.9 20.7 20.2 20.0 20.1 19.5 20.0 19.7 195 19.2 19.1 19.4 203
84 217 212 20.7 211 211 20.7 21.0 20.2 20.4 203 19.5 19.5 19.3 19.3 19.5 19.1 19.1 20.1 21.8
Of pl"OtOﬂS and neutrons abraded. 83 232 19.8 20.5 20.0 20.6 20.4 20.5 20.5 20.5 204 19.6 20.2 19.6 19.6 19.7 20.1 20.4 19.5 18.8
82 193 19.1 212 20.4 20.6 20.4 20.8 20.2 20.4 20.5 20.5 20.2 20.0 19.8 19.5 20.0 19.1 19.7
81 20.9 19.3 20.6 19.3 19.4 20.1 19.1 20.2 20.4 20.3 19.7 20.1 19.6 18.3 17.9 18.3 18.1 17.6

7/3 1/2023 80 21.1 21.3 20.6 19.1 20.3 20.2 19.0 20.5 20.2 19.1 20.5 19.9 20.0 18.4 20.1 18.9 16



Production of the residual nucleus

JWe find that the production of
the residual nucleus in BeAGLE
manifests as a very simple
abrasion model:

» The excitation energy shows a

linear dependence on the number
of abraded nucleons.

»The cross section for abrading a
given number of nucleons (for
dA>1) shows a (piecewise)
exponential dependence.

Yield (arb.)

107 E

1 075 L I B T I | I N T I | I N | I I

107 E

0102

20
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30

Number of abraded
nucleons:

dA = Apeam — Ares

238) beam



Production of the residual nucleus

JWe find that the production of the
residual nucleus in BeAGLE
manifests as a very simple abrasion
model: dA = Apogm — Ares

»The excitation energy shows a linear o0r
dependence on the number of
abraded nucleons.

» The cross section for abrading a given
number of nucleons (for dA>1) shows
a (piecewise) exponential
dependence. ol

» For a given number of abraded L -
nucleons, the relative proportion of S A
neutrons and protons abraded is I
based on simple combinatorics.

Number of abraded
nucleons:
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Production of the residual nucleus

JWe find that the production of the
residual nucleus in BeAGLE
manifests as a very simple abrasion
model:

» The excitation energy shows a linear
dependence on the number of
abraded nucleons.

» The cross section for abrading a given
number of nucleons (for dA>1) shows
a (piecewise) exponential
dependence.

» For a given number of abraded
nucleons, the relative proportion of
neutrons and protons abraded is
based on simple combinatorics.

Note: The observed simple abrasion model
comes out of BeAGLE ‘naturally’. The simulation
uses an intra-nuclear cascade model and a
nuclear potential model to determine the A, Z
and excitation energy of the residual nucleus. The
ground state mass model comes from FLUKA.

Intra-nuclear cascade hadron formation time:

E. m?

S

TLab = T0
v Mg -m% + ng

Mass (excitation energy) of the residual nucleus:

N w

(Em?s- pres) = (J['i 0) - Z (Egj p}?) + (EI‘('.'.('.." prec)
=1

Z.Phys. C70 (1996) 413-426 Z.Phys. C 71, 75-86 (1996)




We can then decay the residua

Intermediate Nucleus: 18 GeV e + 110 GeV/A 28U
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We can then decay the residua

Intermediate Nucleus: 18 GeV e + 110 GeV/A 28U
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FLUKA and ABLAO7 are largely in agreement about EIC production rates

208pb
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Fission fragment production can also be studied with LISE++

Based on BeAGLE findings above, an
Exponential Abrasion Model has been

implemented in LISE++:

Bz Excitation Energy of prefragment

A Element 2 A e
132 sn 50 &z [=
Excilation Energy =
B gecay alln [ =

Standard deviation =

Reaction R (110.0 Gaviu) + H
gamma =

it; th =1 4 Mev
Excitation Energy in the code 5628 U sigma=

—~ Abrasion model

Geometrical - J Gosset etal . PRC 16 (1977)629

@ Exponentional ( Y~ exp{-k*d_abr) k= 0363 ]

Global Abrasion Cross-Seclion Facior = 1

0

9884

0.95

96

Correction factor of Surface dislortion excitation

(default 1)

— A JWWilson, LW.Towsend, F.F.Badavi, NIM B18 (1986) 225-231 - geomelrical model

Mev .
- 1Ay Epe
e
Mevim 2 Excilation Energy Transfer (friction)
E wsen = £08F* C .+ €01, C,* C,
*d_abr "2 (mev) e ’

Cyis the length of the longest chord in the projechile
surface interface, C, is the chord of intersection

coely = 65 Cy=| 146 im
f=1+c,*d_abriAp+c;*(d_abr/Apy*
coel;=| 05 264 fm
~ Excitation Energy Models 15 c=| 25 1= 218 1 25
B. J-JGaimard and K-H Schmict. NPAS31 (1881) 708 B. J-J.Gaimara and K.-H.Schmiat. NPAS31 (1991) 709 ~ convoiution of nangle aisinoutons
Hole depth <t = 2339 *d_ab [Mev] Mean Excitation Energy = | 247854 Mev
® C. Parametrized Gaussian distribution (Mev}
70 sigma = 16.5 *d_abr"® evy Standard deviation = | 168.91  MeV
D cilatl ay
Apply the limiting tempearatura threshold: T=min{T.Tlim) rC.F — Jram NPAT10 (2002) 157
“Isospl ometer model”, c o Figd §
K.-H Schmidt et al, NPAT10 [2002) 157 <E*= sigma Mean Excitation Energy = 156284 MeV
++ Coire for Geometric A-A mod 00737 *d_abr + 11644 *d_abr + Standard deviation = | 133.44 MeV
Apply thermalization for Excital energy according to 22 556 *d_ahr+ 24949 *d_abe'd+
J-J.Gaimard K.-H Schmidt, NPAS31 (1991) 709, Ap is the projectile mass,
see Equation 3.4 0 eV 0 M) d-abr is the number of abraded nucleans
B Piotas f(A_ph ~D. encitation-energy - LAuanac et al, PRCES, 041602(R) (2013)
Mean Temparature “Ez| 13 "d_abrMen) Mean Excitation Energy= | 1378 MaV
b Plotasf(@_ph Make default (Mev)
13 sigma= | 13 *0_aor'¥wev Standard deviation = | 13384 MeV
v 0K # Cancsl T Hep
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Comparison of different models:

238y beam




Using our small simulation sample, we see hints of interesting physics

Production of new neutron-deficient Predicts the ABLAO7 - Evaporation Region
isotopes in the Z=89-94 range. creation of the | | : : | | 9
Advantages over RIB facilities due to undiscovered =
short flight time and possibly higher isotope207th [ (N ]
production cross section. 5 5 —
85 : ................ §
" a | 3
-
g 8 e R S
== L e
We need to simulate many more 70 ................ ................ ................ 10
events to model the production |
rates at the EIC; or use LISE++ for il I P T TS B I

125 130 135 140 145 150
Neutrons
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Detection of nuclear
fragments
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EIC Detectors — far-forward region

2nd Focus
Roman Pots

\}A
>

ZDC / QDSO01 Quadrupole
Roman Pots BXDSO01B Dipole

doi:10.2172/1765663 \ N
a(f‘a“e( \
(<

°
0"\
BO Trackers + Calorimeter / wed Off Momentum
BXDSO01A Dipole

/‘ QFFDS02B Quadrupole
QFFDS02A Quadrupole
/QFFD501B Quadrupole

/QFFD501A Quadrupole
BXSPO1 Diople

Conceptual design for IP8

M The nuclear fragments can be measured using detectors in the (second set
of) Roman Pots (RP) — two tracking planes to measure local positions and
angles.

(J Gamma rays can be detected using the Zero-Degree Calorimeter (ZDC). -
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Daughter Nuclei: 18 GeV e + 110 GeV/A ***U
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Kinematics of produced nuclear fragments

Daughter Nuclei: 18 GeV e + 110 GeV/A ***U

s . 100 :
i— 0 - J S R S S M (o S _§
Fission region i R :
g||..--'f|"'-“-:+‘=;“|| ] 0 2 PR AP AU IV IV I
0 05 1 5 > 55 3 0 20 40 60 80 100 120 140 160
Angle [mRad] Neutrons
. . . 238 . [ . ,
(with respect to incoming *U beam) One fragment will be ‘upshifted’ and the
other ‘downshifted’. Both fission fragments
can be registered in coincidence. BeAGLE + FLUKA
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Kinematics of produced nuclear fragments

Daughter Nuclei: 18 GeV e + 110 GeV/A ***U Daughter Nuclei: 18 GeV e + 110 GeV/A **°U
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Principle of detection —rigidity measurement

At first approximation the momentum- Some definitions
per-nucleon of the outgoing fragment
(p,) is the same as the momentum-per-

nucleon of the incoming beam (py, peam)- [/l Fragment Rigidity (R) = g
) ApN) _
R (%2 R
X = = Z /A X; =
Ryeqm ( beampN,zm) Ryoam
- | Zpeam |
(é) Relative Rigidity (Rpe;)
= [\? R — Rpeam
Abeam Measurement of rigidity (x,) = R =x; — 1
Zpeam /. determines the fragment beam

A/Z ratio



Principle of detection —rigidity measurement

The hit position at the Roman Pot (RP) detectors

in the dispersive direction:

XRp = Dx(_RRel) — Dx(l — xL)

Minimum allowed hit position at the RPs to

exclude beam envelope:

min
XRP

=100, = 10\/,8x€x + Dfoy

Additional definitions

At Roman Pots:
Dispersion (D,.)

Beta Function (f,)

Accelerator parameters (EIC CDR Table 3.5):
Beam Emittance (&,,) = 43.2 nm

Momentum spread (o,) = 6.2 X 107*

d0i:10.2172/1765663




Acceptance for fragments in IP6 and IP8

pl A
IP6 configuration -
Detected no secondary focus
| Excluded |\
0 / 0.3 1 \xL
Limited by D, Limited by angular
and (3, acceptance (B"=pp)
pl A

IP8 configuration —
including secondary

Detected focus

IP6 acceptance at first RP (using the high-
divergence 10x100 GeV shifted lattice):

f, = 865m
D, =16.7 cm
— xppy = 6.11cm

IP8 acceptance at first RP:

b, =2.28m
D, =38.2cm
— xppr = 0.39 cm



Acceptance for fragments in IP6 and IP8

P1
IP6 configuration —
no secondary focus
Excluded |\
0 / 0.3 1 \xL
Limited by D, Limited by angular
and B, acceptance (B=pp)
b1

IP8 configuration —
including secondary
focus

Y

0 099 1 g,
7/31/2023

IP6 acceptance at first RP (using the high-
divergence 10x100 GeV shifted lattice):

), = 10./ CM
—|xppy = 6.11 cm

IP8 acceptance at first RP:

), = 30.2CM
- kM = 0.39 cm

I
o
[
I
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Isotope Z
S

Detected

201

7/31/2023

Acceptance for fragments in IP6 and IP8

IP6

IR6: Dy = 16.7 cm
1004 = 6.1 cm

Detected

=5 0 5 10
X position at RP1 [cm]

Each point is an individual isotope. All
known and potential isotopes which come
from a combined NNDC and LISE++ database
are included.

Isotope Z

IP8

IR8: D, = 38.2cm
100, = 0.39 cm

X position at RP1 [cm]

Assuming a RP position resolution of
10-100 microns, isotopes with the
same Z are well separated.
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1.

Full reconstruction of the fragments

The charge of the isotope (Z) must be
determined. This can potentially be
done using a thin (few mm thick)

uartz bar placed inside the RP (behind
the tracker) at the second focus. The

uartz bar would be perpendicular to
the beam, extended along the
dispersive (x) direction. The number of
Cherenkov photons produced will be
quite large (proportional to Z2).

In the fission region, the outgoing
isotopes do not have the same
momentum-per-nucleon as the ion
beam. This can be corrected for by
measuring the angles at the RP
detectors and registering both fission
fragments in coincidence.
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Detection of gamma rays

Single gamma simulation — 110 GeV/A beam

Gamma Energy vs. Polar Angle: Lab Frame LGamma rays from nuclear de-excitations can be
1000 detected in the Zero-Degree Calorimeter (ZDC). The
900 ZDC acceptance range will be approximately 0-5 mRad.

2.0 MeV Gamma . .
1.0 MeV Gamma The energy resolution of the ZDC for photon detection

0.5 MeV Gamma may be as good as 2%/\/E (GeV) if a material such as
LYSO crystals are used.

800

700
600

>0 QWe will therefore be able to measure gamma rays

which are Lorentz upshifted and moving very close to
the ion beam direction.

400
300

200

A 1 MeV gamma will have an energy of ~240 MeV at
zero degrees in the lab frame. For the ZDC resolution
== e=s above, this gamma will have its energy measured to
6 [mRad] 4% in the lab frame. At first approximation, the energy
resolution in the nucleus’ rest frame is equivalent —

that is, a 40 keV resolution for a 1 MeV gamma.
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o
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Energy [MeV]

Detection of gamma rays

Single gamma simulation — 110 GeV/A beam

Gamma Energy vs. Polar Angle: Lab Frame De-excitation gammas: full simulation results
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Summary and ongoing work

Our simulation studies suggest the EIC has the potential to produce nuclear fragments using
various heavy-ion beams. We believe that measuring these fragments can complement current
and future work being done at dedicated rare isotope facilities.

dWe are working to implement the current official IR8 lattice (see https://wiki.bnl.gov/eic-
detector-2/index.php?title=Project Information) into Geant4 to conduct some detailed
simulation studies. We are conducting additional simulations with BeAGLE and working to
compare the residual nucleus results to published data.

dWith the right combination of detectors, these nuclei can be reconstructed using the proposed
optics design of the 2"d interaction point using detectors located at a secondary focus.

Our studies also suggest that de-excitation gamma rays can be measured in coincidence with the
nuclear fragments to quite high resolution.

Given the time scales for the EIC project — and the 2" interaction region in particular — there is
sufficient time to conduct further studies on the potential of the EIC to contribute to this physics,
as well as place requirements on the far-forward spectrometer optics and detector design.


https://wiki.bnl.gov/eic-detector-2/index.php?title=Project_Information
https://wiki.bnl.gov/eic-detector-2/index.php?title=Project_Information
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Residual nucleus excitation energy distributions
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Residual nucleus sensitivity to formation time parameter
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Expected EIC event counts

JEvent rates at the EIC will be on the order of 10,000 events per
second. Most of these events are at very low Q? (the photoproduction
region of the e-p/A total cross section), but nuclear fragments can still
be produced and detected in for these kinematics.

dThe 10 million event sample which we generated may correspond to
less than an hour of EIC running. Generating a larger number of
events with BeAGLE becomes computationally expensive.

dSince all we care about here is the production of the residual
nucleus, we can create a simple empirical parameterization of the
abrasion model observed in BeAGLE.



Comparison of BeAGLE results and parameterized distribution
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Using our parameterized model for the
residual nucleus, we can simulate 10
7/31/2023 million events in a few minutes.

The results are very consistent with

using the full BeAGLE simulation.
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isotopes as additional events are generated.
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Time-of-flight measurements would require picosecond resolution

For a flight distance of 50 meters
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Number of nuclear de-excitation neutrons per event

Centrality determination
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Centrality determination — model sensitivity

18 GeV e + 110 GeV/A 28U

BeAGLE+FLUKA
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