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• Brookhaven National Laboratory proposed 
the Electron-Ion Collider which is scheduled 
to be built in the 2020s. 

• The EIC facility is a high polarization and
high luminosity collider. 

• Home to the dRICH detector, the focus of 
our studies.

Background

Rahman, S. Deconinck, W. The Electron-Ion Collider 

(EIC) poster. EIC-Canada collaboration.
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• Speed of light is slower in a medium (phase velocity of 
light)

• Particles can move at higher speed than the phase velocity 
of light

• When this happens, a characteristic glow is produced. i.e., 
nuclear reactors

• Analogous to the sonic boom produced at supersonic 
speeds.

Cherenkov Radiation

Argonne National Laboratory. (2009, April 8) Advanced Test Reactor core, Idaho National Laboratory.

https://www.flickr.com/photos/35734278@N05/3954062594/
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EIC dRICH Detector

• The dual-radiator Ring Imaging Cherenkov 

detector is a photoionization (PID) detector with 

powerful hadron identification properties (pions, 

kaons, & protons).

• Composed of 6 sectors, each sector containing 

aerogel and gaseous layer.

• The principle behind RICH detectors is to use 

Cherenkov radiation to produce rings of different 

sizes (depending on particle type).

Khalek, R. et al. (2021, October 27). Science requirements and 

detector concepts for the electron-ion collider: EIC yellow report.

https://arxiv.org/abs/2103.05419 

Bock, Friederike. et al. (2021, December 1) ECCE Particle Identification. 

ecce-note-det-2021-04v1.0
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Motivation

• Our primary motivation is to provide a continuous method of particle identification with high accuracy. 

• Data generated using DD4hep by CERN. ROOT file created containing the specified number of events.  

• Sparsification of our model.

• 80/10/10 split for training/validation/test datasets.
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Data Cleaning

Unfiltered Electron Data Filtered Electron Data

Removing Empty Events 
& events with too many 

or too little points

• Lots of data lost (~ 60% of events are empty)

• Filtered data is not perfect but good enough.
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Convolutional Neural Networks (1/3)

Convolution Layer

P, Pröve. (2018, February 7). An introduction to 

different types of convolutions in deep learning. 

Towards Data Science. 

https://towardsdatascience.com/types-of-

convolutions-in-deep-learning-717013397f4d

For: 

n = input image size 

f = filter size 

p = padding size

s = stride size

We get: 

𝑛𝑜𝑢𝑡 =
𝑛 + 2𝑝 − 𝑓

𝑠
+ 1

As an example:

𝑛𝑜𝑢𝑡 =
5 + 2(1) − 3

1
+ 1 = 5

Brownlee, J. (2021, November 14). How to develop a CNN for mnist handwritten digit classification. 
MachineLearningMastery.com. Retrieved December 12, 2022, from 
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-
scratch-for-mnist-handwritten-digit-classification/ 

• CNNs have remarkable image recognition 

properties, which make them very suitable for 

this problem. 

• MNIST is an example of a dataset where CNNs 

perform very well, with an error rate of 0.09%
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Convolutional Neural Networks (2/3)

Pant, P. (2019, November 21). CNN: Understanding edge detection with an example. 
Retrieved December 13, 2022, from https://pradeeppant.com/2019/11/21/cnn-
understanding-edge-detection-with-an-example.html 
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Convolutional Neural Networks (Pooling)

• Pooling layers are used for dimension reduction: retain features of the image while decreasing image size.

• Multiple types of pooling, such as max pooling and average pooling.

Pooling Layer

Khosla , S. (2022, August 24). CNN: Introduction to pooling layer. 
GeeksforGeeks. Retrieved December 12, 2022, from 
https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/ 
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Original Working Model

Input

Conv1

f = 3

#f = 8

p = 1

s = 1

100x100x1 100x100x8

AvgPool1

f = 2

s = 2

50x50x8

Conv2

f = 3

#f = 16

p = 1

s = 1

50x50x16

AvgPool2

f = 2

s = 2

25x25x16

Flatten

10000x1

Fully 

Connected 

Layer

Pion

Electron
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Sparse Tensors

• Dense tensors become too computationally intensive for a larger number of events. 

• A more memory efficient and faster way to store our data is needed. 

• Sparsifying our data allows us to do this without a loss in data.

• The amount of memory saved relies on how sparse the data is, but there is at least a 200-fold memory 

efficiency in sparsification [1].

Sparsification (1/6)

[1] Torch.sparse. torch.sparse - PyTorch 2.0 documentation. (n.d.). Retrieved April 10, 2023, from
 https://pytorch.org/docs/stable/sparse.html#sparse-coo-docs 
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The Sparse COO Format

• There are a number of formats to store 

sparse data, for example the coordinate 

format (COO) and the CSR/CSC format.

• The COO format is used by Minkowski 

Engine so we will focus on it.

• The COO format stores both the row and 

column coordinates, alongside the value 

at that coordinate.

Sparsification (2/6)

Eding, M. (2019, April 25). Sparse matrices. Sparse Matrices · Matt Eding. 
Retrieved April 7, 2023, from https://matteding.github.io/2019/04/25/sparse-
matrices/#coordinate-matrix 
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Minkowski Engine

• The major frameworks for machine learning lack native support 

for convolutions with sparse data.

• This leads to using an external library, we opted for Nvidia’s 

Minkowski Engine.

• Data is quantized.

Sparsification (3/6)

Choy, C. et al. (2019). 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. 
https://arxiv.org/abs/1904.08755#
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Overfitting & Dropout

• Overfitting is a common issue where the model 

learns the training data too well. This causes the 

model to fail with new data.

• Validation dataset allows us to test the model on 

new data during the training process.

• Dropout layers address this issue by deactivating 

some neurons during the training process. 

Sparsification (4/6)

Srivastava, N. et al. (2014). Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
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Hyperparameter Optimization

• Manually adjusting hyperparameters is a tedious 

process and unlikely to give the best 

hyperparameters to train our model.

• Hyperparameter optimization methods offer an 

automated and methodical way by which we can 

find the best hyperparameters to minimize our loss.

• We use Bayesian hyperparameter optimization, a 

method which uses prior results to better predict the 

parameters.

Sparsification (5/6)

Koehrsen, W. (2018, July 2). A conceptual explanation of Bayesian hyperparameter optimization
for Machine Learning. Medium. Retrieved April 10, 2023, from https://towardsdatascience.com/
a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-
learning-b8172278050f 
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New Model

Dropout

GlobalMaxPool

Fully 

Connected 

Layer

Electron

Kaon

Sparsification (6/6)

Pion

Proton

Sparse Input Conv 1 Conv 2 Conv 3

#f = 64 #f = 128

Dropout

Predictions Compressed

#f = 256

Dropout
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Model Performance (1/2)

• Adding dropout layers between the hidden layers addressed our overfitting problem.

Results (1/6)17



Model Performance (2/2)

• With the magnetic field disabled, we get an accuracy of 96.75% for the test dataset.

• With the magnetic field enabled, we have a 93.82% accuracy for the test dataset.

• As expected, the magnetic field introduces more noise which decreases the accuracy of our model.

Results (2/6)

Particle Events Accuracy

Pion 9677 95.44%

Electron 8339 95.57%

Kaon 2635 76.81%

Proton 215 4.55%
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Kaon Performance
Results (3/6)19



Proton Performance
Results (4/6)

• The proton events are highly

irregular and too noisy. 

Independent of magnetic fields.

• The low number of events leads

to less training data and therefore

a much worse accuracy.

• A few good events stand out but

it is overwhelmingly comprised

of non-rings.
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Limitations

• An octree-based framework like O-CNN outperforms Minkowski Engine in both memory efficiency and 

speed.

• Datasets are not evenly balanced, protons had very few events remaining after cleaning relative to the rest of 

the particles. 

• The number of points per event will be affected once the quantum efficiency of the detectors, dead areas 

between pixels, and safety factor are considered. This is because we don’t have an exact pixel count since it 

isn’t a flat grid.
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Future Work

• Make sure that the model has equal data for each particle type.

• Replace Minkowski Engine with O-CNN for memory and speed benefits.

• Implement momentum as another factor during training, alongside coordinates.

• Deploy model in C++ interface for speed boost.

• Improve the accuracy even further and deploy the model in the facility.
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Appendix (1/4)

Wang, P. (2017). O-CNN: Octree-based Convolutional Neural Networks for 

3D Shape Analysis. [PowerPoint slides]. 

https://onedrive.live.com/view.aspx?resid=97002CD884825EBF!2092&ithint=

file\%2cpptx&authkey=!ADgc5oQjg_dQbaQ
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Bock, Friederike. et al. (2021, December 1) ECCE Particle Identification. 

ecce-note-det-2021-04v1.0



Appendix (3/4)

Keshtkar, K. (2021). Convolutional neural networks in computer-aided 
diagnosis of colorectal polyps and cancer: A Review. 
https://doi.org/10.20944/preprints202110.0135.v1 



Appendix (4/4)

• Dropout layer percentage is unknown, as it is unstated in the documentation 

• 600 epochs, 0.0001 learning rate.

• Average and standard deviation  of multiple runs for accuracy is preferable to accuracy based on one run.
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