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Background

« Brookhaven National Laboratory proposed
the Electron-lon Collider which is scheduled
to be built in the 2020s.

» The EIC facility is a high polarization and
high luminosity collider.

 Home to the dRICH detector, the focus of
our studies.
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Rahman, S. Deconinck, W. The Electron-lon Collider
(EIC) poster. EIC-Canada collaboration.



Cherenkov Radiation
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« Speed of light is slower in a medium (phase velocity of
light)

« Particles can move at higher speed than the phase velocity
of light

« When this happens, a characteristic glow iIs produced. i.e.,
nuclear reactors

« Analogous to the sonic boom produced at supersonic
speeds.

Argonne National Laboratory. (2009, April 8) Advanced Test Reactor core, Idaho National Laboratory.



EIC dRICH Detector

* The dual-radiator Ring Imaging Cherenkov
detector is a photoionization (PID) detector with
powerful hadron identification properties (pions,
kaons, & protons).

« Composed of 6 sectors, each sector containing
aerogel and gaseous layer.

* The principle behind RICH detectors is to use
Cherenkov radiation to produce rings of different
sizes (depending on particle type).

Khalek, R. et al. (2021, October 27). Science requirements and
detector concepts for the electron-ion collider: EIC yellow report.

Bock, Friederike. et al. (2021, December 1) ECCE Particle Identification.
ecce-note-det-2021-04v1.0
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Motivation
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Our primary motivation is to provide a continuous method of particle identification with high accuracy.

Data generated using DD4hep by CERN. ROOT file created containing the specified number of events.

Sparsification of our model.

80/10/10 split for training/validation/test datasets.



Data Cleaning
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Unfiltered Electron Data Filtered Electron Data

Removing Empty Events
& events with too many
or too little points

« Lots of data lost (~ 60% of events are empty)

 Filtered data is not perfect but good enough.



Convolutional Neural Networks (1/3)
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* CNNs have remarkable image recognition Convolution Layer
properties, which make them very suitable for
this problem.

For:

n = input image size
f = filter size

p = padding size

s = stride size

* MNIST is an example of a dataset where CNNs
perform very well, with an error rate of 0.09%

We get:

Nout = \

As an example:

5+ 2(1) — 3
nout= 1 +1=5

P, Prove. (2018, February 7). An introduction to

. different types of convolutions in deep learning.
Brownlee, J. (2021, November 14). How to develop a CNN for mnist handwritten digit classification. Towards Data Science.

MachinelLearningMastery.com. Retrieved December 12, 2022, from




Convolutional Neural Networks (2/3)

Review (7/9)

vertical edges

0 0 5

horizontal edges

Pant, P. (2019, November 21). CNN: Understanding edge detection with an example.
Retrieved December 13, 2022, from



Convolutional Neural Networks (Pooling)
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» Pooling layers are used for dimension reduction: retain features of the image while decreasing image size.

« Multiple types of pooling, such as max pooling and average pooling.

Pooling Layer

Average Pool

—

Filter - (2 x 2)
Stride - (2, 2)

4.25

Khosla, S. (2022, August 24). CNN: Introduction to pooling layer.
GeeksforGeeks. Retrieved December 12, 2022, from




Original Working Model
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Sparse Tensors

Sparsification (1/6)

* Dense tensors become too computationally intensive for a larger number of events.

« A more memory efficient and faster way to store our data is needed.

 Sparsifying our data allows us to do this without a loss in data.

« The amount of memory saved relies on how sparse the data is, but there is at least a 200-fold memory
efficiency in sparsification [1].

[1] Torch.sparse. torch.sparse - PyTorch 2.0 documentation. (n.d.). Retrieved April 10, 2023, from



The Sparse COO Format
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Column
» There are a number of formats to store C O O
sparse data, for example the coordinate L . NC B O
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L Matt Eding

at that coordinate.

Eding, M. (2019, April 25). Sparse matrices. Sparse Matrices - Matt Eding.
Retrieved April 7, 2023, from



Minkowski Engine

Sparsification (3/6)

» The major frameworks for machine learning lack native support
for convolutions with sparse data.

* This leads to using an external library, we opted for Nvidia’s
Minkowski Engine.

 Data is quantized.

Choy, C. et al. (2019). 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks.



Overfitting & Dropout

Overfitting is a common issue where the model
learns the training data too well. This causes the
model to fail with new data.

Validation dataset allows us to test the model on
new data during the training process.

Dropout layers address this issue by deactivating
some neurons during the training process.
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(a) Standard Neural Net
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(b) After applying dropout.

Srivastava, N. et al. (2014). Dropout: A Simple Way to Prevent Neural Networks from

Overfitting.



Hyperparameter Optimization Sparsification (5/6)

[ Jpred var == pred mean = = = truth ® evaluations ¢

« Manually adjusting hyperparameters is a tedious
process and unlikely to give the best
hyperparameters to train our model.

f(x)

» Hyperparameter optimization methods offer an
automated and methodical way by which we can
find the best hyperparameters to minimize our loss.

« \We use Bayesian hyperparameter optimization, a
method which uses prior results to better predict the

f(x)

parameters.

Koehrsen, W. (2018, July 2). A conceptual explanation of Bayesian hyperparameter optimization

for Machine Learning. Medium. Retrieved April 10, 2023, from



New Model
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Model Performance (1/2)

Adding dropout layers between the hidden layers addressed our overfitting problem.

Loss
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Model Performance (2/2)

Results (2/6)

« With the magnetic field disabled, we get an accuracy of 96.75% for the test dataset.

« With the magnetic field enabled, we have a 93.82% accuracy for the test dataset.

* As expected, the magnetic field introduces more noise which decreases the accuracy of our model.

Particle Events Accuracy
Pion 9677 95.44%
Electron 8339 95.57%
Kaon 2635 76.81%
Proton 215 4.55%




Kaon Performance
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Proton Performance
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« The proton events are highly

Irregular and too noisy.

Independent of magnetic fields.

* The low number of events leads
to less training data and therefore

a much worse accuracy.

« A few good events stand out but
It is overwhelmingly comprised

of non-rings.
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Limitations
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* An octree-based framework like O-CNN outperforms Minkowski Engine in both memory efficiency and
speed.

« Datasets are not evenly balanced, protons had very few events remaining after cleaning relative to the rest of
the particles.

* The number of points per event will be affected once the quantum efficiency of the detectors, dead areas
between pixels, and safety factor are considered. This 1s because we don’t have an exact pixel count since it
isn’t a flat grid.



Future Work
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» Make sure that the model has equal data for each particle type.

* Replace Minkowski Engine with O-CNN for memory and speed benefits.

* Implement momentum as another factor during training, alongside coordinates.

* Deploy model in C++ interface for speed boost.

* Improve the accuracy even further and deploy the model in the facility.



Acknowledgements & Resources

» I’d like to acknowledge Dr. Wouter Deconinck and Dr. Zhiyang Zhou’s help during my thesis.

« I’d also like to thank Sakib Rahman & Max Fatouros for their help with regards to hyperparameter
optimization and dropout layers respectively.

* My code and thesis can be found at:






Appendix (1/4)

Computational Efficiency Memory Efficiency
Time (msec) Average time for each forward and backward iteration Memory (GB) GPU Memary
1600 6
1400 5
1200 O(N3) O-CNN
1009 O-CNN '
300 O (N 2 ) 3
600 5
400

1
200

——— .
0 Resolution 0 Resolution
1673 3273 6413 12843 25673 16*3 3273 B64r3 12843 256"3
—Q0-CNN Voxel CNN —0-CNN Voxel CNN

Wang, P. (2017). O-CNN: Octree-based Convolutional Neural Networks for
3D Shape Analysis. [PowerPoint slides].
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----- . Learning step

Loss function

Initial value ' Minimium

§

Keshtkar, K. (2021). Convolutional neural networks in computer-aided
diagnosis of colorectal polyps and cancer: A Review.



Appendix (4/4)

« Dropout layer percentage is unknown, as it is unstated in the documentation
* 600 epochs, 0.0001 learning rate.

« Average and standard deviation of multiple runs for accuracy is preferable to accuracy based on one run.
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