

arXiv:2307.01183[hep-ph]

Extraction of the strong coupling with HERA and EIC inclusive data

Salim Cerci (Adiyaman), <u>Zuhal Seyma Demiroglu</u> (SBU, CFNS), Abhay Deshpande (SBU, CFNS, BNL), Paul Newman (Birmingham), Barak Schmookler (UC Riverside), Deniz Sunar Cerci (Adiyaman), Katarzyna Wichmann (DESY)

ePIC Collaboration Meeting 2023

28 Jul, 2023

Motivation

- Physics scopes of HERA and EIC differ but have significant overlap.
 - Inclusive DIS cross sections will be measured to high precision in a phase space region that will be complementary to HERA.
- The strong coupling, α_s , is the least well constrained.
 - Essential ingredient of SM cross section calculations, as well as constraints on new physics and grand unification scenarios.
- Inclusive DIS cross section is sensitive to α_s through F_2 and F_L .

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} [Y_+F_2(x,Q^2) - y^2F_L(x,Q^2) \mp Y_-xF_3(x,Q^2)]$$

2/12

Analysis Method

- Final combined H1 and ZEUS inclusive DIS NC and CC cross sections ۰
 - $\sqrt{s} = 320, 300, 251, 225 \text{ GeV}$

 - Total integrated luminosity: 1fb⁻¹ NC: $0.045 \le Q^2 \le 50000 \text{ GeV}^2$, $6 \cdot 10^{-7} \le x_{B_j} \le 0.65$, $0.005 \le y \le 0.95$
 - CC: 200 $\leq Q^2 \leq$ 50000 GeV², $1.3 \cdot 10^{-2} \leq x_{B_i} \leq$ 0.40, 0.037 $\leq y \leq$ 0.76
- EIC pseudodata are produced by considering the studies performed in the ATHENA framework
 - NC pseudodata are produced for five different CMEs. 0.001 < y < 0.95, $Q^2 > 1$ GeV²

\mid e-beam energy (GeV) \mid p-beam energy (GeV) \mid \sqrt{s} (GeV) \mid Integrated lumi (fb ⁻¹)					
18	275	141	15.4		
10	275	105	100		
10	100	63	79.0		
5	100	45	61.0		
5	41	29	4.4		

• CC pseudodata are produced for only \sqrt{s} = 141 GeV.

- Based on the QCD fit → the HERAPDF theoretical framework, PDF parameterisations and model parameter choices.
- Used HERAPDF20_NNLO_ALPHAS_116 LHAPDF set.
- The xFitter framework is used.

QCD fits with EIC inclusive and HERA inclusive+jet data

• A simultaneous NNLO fit is performed to extract the PDFs and $\alpha_s(M_Z^2)$ from HERA inclusive and jet data and EIC inclusive data.

QCD fits with HERA and EIC inclusive data only

• A simultaneous NNLO fit is performed to extract the PDFs and $\alpha_s(M_Z^2)$ from HERA and EIC inclusive data.

Central values of model input parameters and their one-sigma variations.

Parameter		Central val.	Downwards var.	Upwards var.
Q^2_{\min}	[GeV ²]	3.5	2.5	5.0
f_s		0.4	0.3	0.5
M_c	[GeV]	1.41	1.37	1.45
M_b	[GeV]	4.20	4.10	4.30

No scale variations are made for the inclusive data

• EIC and HERA inclusive data, NNLO:

 $\alpha_s(M_Z^2) = 0.1161 \pm 0.0003 \text{ (exp) } \pm 0.0001 \text{ (model + param)}$

Comparison to other $\alpha_s(M_Z^2)$ results

• With using only inclusive DIS data from HERA and EIC, we are able to determine the $\alpha_s(M_Z^2)$ with potentially world-leading precision in a simultaneous fit of PDFs and $\alpha_s(M_Z^2)$ at NNLO.

xFitter

- The estimated total uncertainty on $\alpha_s(M_Z^2)$ when including EIC DIS pseudodata is better than 0.3% \rightarrow Improves the precision of the present world experimental and lattice averages.
- We are working with global fitting experts to assign a meaningful scale uncertainty to our result, due to missing higher order contributions beyond NNLO in the theory.
- Adding inclusive jet and dijet EIC pseudodata to the QCD analysis can improve the $\alpha_s(M_Z^2)$ precision.

Acknowledgements

- We are very grateful to
 - many colleagues in the EIC experimental community for their immense effort in working on all aspects of the project over many years.
 - Néstor Armesto, Andrea Barontini, Thomas Cridge, Stefano Forte, Lucian Harland-Lang, Anna M. Staśto and Robert S. Thorne for their very valuable discussions about the theory uncertainties.
 - Valerio Bertone and Francesco Giuli for their help with the APFEL program.
 - Christopher Schwan for his help with the PineAPPL tool.

Backup

Fit settings for $\alpha_s(M_Z^2)$ fit

• The PDF parameterisation (following the HERAPDF2.0 approach):

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{25}; \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1 + E_{u_v} x^2\right); \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}; \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} \left(1 + D_{\bar{U}} x\right); \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$$

- PDFs are parameterised at a starting scale for QCD evolution of μ_{f0} = $1.9~{\rm GeV}^2.$
- Strangeness fraction: $f_s = x\bar{s}/(x\bar{d} + x\bar{s}) = 0.4$
- The theory settings and their variations:
 - Central scales: $\mu_r^2 = \mu_f^2 = Q^2$ for the inclusive DIS data, $\mu_r^2 = \mu_f^2 = Q^2 + p_T^2$ for inclusive jet data and $\mu_r^2 = \mu_f^2 = Q^2 + \langle p_T \rangle_2^2$ for dijets.
 - Scale variations: μ_r , μ_f scales are varied up and down by a factor of 2.11 or 10.11 of 2.11 o

QCD fits with HERA and EIC inclusive data only

• A simultaneous NNLO fit is performed to extract the PDFs and $\alpha_s(M_Z^2)$ from HERA and EIC inclusive data.

 $\Delta\chi^2 = \chi^2 - \chi^2_{min}$ vs. $\alpha_s(M_Z^2)$ for the NNLO fits to HERA data on inclusive ep scattering only (black), and also with the addition of simulated EIC inclusive data for all five \sqrt{s} values together (red) or for only one \sqrt{s} value.

Sensitivity to minimum Q^2 cut

- The analysis is repeated with the Q_{min}^2 cut increased from 3.5 GeV² to 10 GeV² or 20 GeV².
- The distinct minima still observed, with only a small dependence on Q^2_{min} (below 0.1%).

xFitter