Tyler Kutz (on behalf of ePIC inclusive PWG)

MORTIMER B. **ZUCKERMAN STEM LEADERSHIP** PROGRAM

Charged current reactions at the EIC

Inclusive physics isn't just neutral current!

- Lots of focus on neutral current
 - Scattered electron in final state, over-constrained kinematics
 - Unpolarized PDFs, nucleon spin

Inclusive physics isn't just neutral current!

- Lots of focus on neutral current
 - Scattered electron in final state, over-constrained kinematics
 - Unpolarized PDFs, nucleon spin

- Can also exchange charged weak boson!
 - Final state lepton is neutrino
 →must use hadron reconstruction
 - Changes quark flavor

• CC reactions flavor-dependent

- CC reactions flavor-dependent
- EIC can provide constraints on strange quark content

- CC reactions flavor-dependent
- EIC can provide constraints on strange quark content
- Complementary constraints from e^+ beams

Jacquet-Blondel required to reconstruct CC events

 $\delta_h = \sum_i (E_i - p_{z,i})$

$$y_{JB} = \frac{\delta_h}{2E_e} \qquad Q_{JB}^2$$

 $p_{T,h}^2 = \left(\sum_{i} p_{x,i}\right)^2 + \left(\sum_{i} p_{y,i}\right)^2$

• High demands on performance of *entire* detector! • Requires excellent electron ID to veto NC events

Reduced CC $C_{0.8}^{2}$ Sections $Q^{2} = 170 \text{ GeV}^{2}$ $Q^{2} = 370 \text{ GeV}^{2}$

- Projection from^{0.4}_{0.2}ECCE simulation
- Major systematics:
 - Energy resolution
 - Neutral-current contamination

 $Q^2 = 750 \text{ GeV}^2$

70 GeV²
$$Q^2 = 370 \text{ GeV}^2$$
 $Q^2 = 750 \text{ GeV}^2$

Jr, CC

0.2

 $Q^2 = 1$

Strangeness of the proton with CC

Work by George Williams

- $W^- + \overline{s} \to \overline{c}$
- Tag charm via long-lived decay products
- Apply minimum cut on $d_0 \propto \tau$

Displaced Tracks

Strangeness of the proton with CC

Work by George Williams

• $W^- + \overline{s} \to \overline{c}$

- Tag charm via long-lived decay products
- Apply minimum cut on $d_0 \propto \tau$

Efficiency vs. Purity

• Optimized d_0 cut with ATHENA simulation (18x275 GeV)

• Projected statistical precision of $\sigma_c = 1.302 \pm 0.004$ pb (100 fb⁻¹)

Displaced Tracks

Energy flow for CC reconstruction Work by Matthew Hellen y Resolution (Hadron Method, NC)

 $\log_{10}(Q^2)$

- Group calorimeter towers in cone around projected track
- Optimize cone size, p_T cuts
- Achieved sub-25% resolution in y across most of phase space

Energy flow for CC reconstruction Work by Matthew Hellen y Resolution (Hadron Method, NC)

 $\log_{10}(Q^2)$

- Group calorimeter towers in cone around projected track
- Optimize cone size, p_T cuts
- Achieved sub-25% resolution in v across most of phase space

See talk by Daniel Brandenburg on recent particle flow efforts for ePIC

Summary

- CC reactions, charm tagging can provide flavor separation in the proton • As with NC reactions, biggest ePIC impact on PDFs at large x
- Resolution, electron ID critical to CC analyses
- Particle-flow efforts underway

