# Low-energy effective description of pseudo-scalar mesons in SO(N)-like dark QCD

Presented by: Joachim Pomper Co-author: Dr. Suchita Kulkarni

27.09.2023

ACHT 2023 – Schloss Retzhof

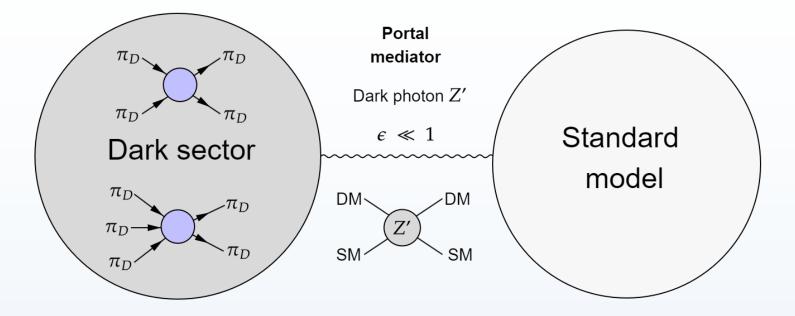




**FUF** Der Wissenschaftsfonds.

# SIMPs - Strongly Interacting Massive Particles

[Hochberg et al: ArXiv: 1402.5143]



- Self-interactions resolve small scale structure formation problems.
- $3\rightarrow 2$  cannibalization sets correct DM relic abundance.
- Dark photon Z' mediator maintains thermal equilibrium.

# SIMPs from $SO(N_C)$ -like dark QCD

Strong dark sector:

- Non-abelian gauge group  $G_D$
- $N_F$  Dirac fermions in **real** representation  $\mathcal{R}$ .

Prototypical model:

$$(G_D = SO(N_C), \mathcal{R} = N_C, N_F = 2)$$

| Original motivation:                                                   |  |  |  |  |
|------------------------------------------------------------------------|--|--|--|--|
| $\mathop{Sp(4)}\limits_{\sim}$ + Antisymmetric fermions                |  |  |  |  |
| $\stackrel{=}{SO(5)}$ + $\stackrel{\text{Vector}}{}_{\text{fermions}}$ |  |  |  |  |
|                                                                        |  |  |  |  |
| $(N_C, N_F)$ below the conformal window.                               |  |  |  |  |

# SIMPs from $SO(N_C)$ -like dark QCD

#### Strong dark sector:

- Non-abelian gauge group  $G_D$
- $N_F$  Dirac fermions in **real** representation  $\mathcal{R}$ .

Prototypical model:

$$(G_D = SO(N_C), \mathcal{R} = N_C, N_F = 2)$$

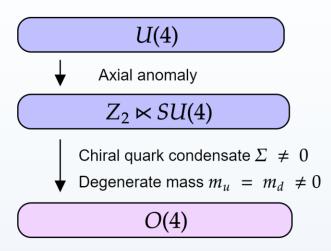
Mediator sector: Dark photon Z'

- Gauge boson of abelian gauge-group  $U(1)_D$ .
- Abelian Higgs mechanism gives mass  $m_{Z'}$  for Z'.
- Kinetic mixing with SM Hypercharge via  $\frac{\epsilon}{2\cos(\theta_W)}Z'_{\mu\nu}B^{\mu\nu}$

| ( | Original motivation:             |                           |   |  |  |
|---|----------------------------------|---------------------------|---|--|--|
|   | $\mathop{Sp(4)}\limits_{\sim}$ + | Antisymmetric<br>fermions |   |  |  |
|   | SO(5) +                          | Vector<br>fermions        |   |  |  |
|   |                                  |                           | - |  |  |
|   | $(N_C, N_F)$ conforma            |                           |   |  |  |

### Symmetries and lightest stable particles

#### Breaking pattern

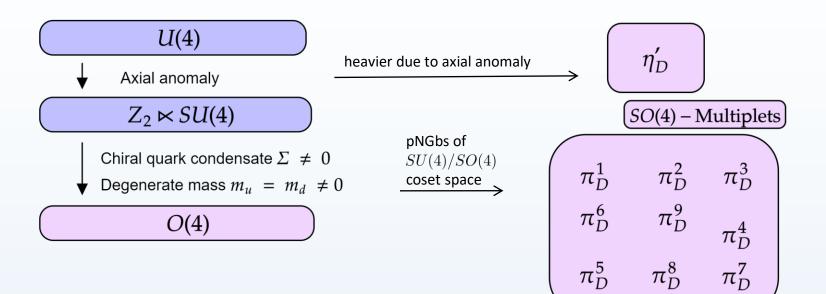


### Symmetries and lightest stable particles

**Breaking pattern** 

**Pseudo-scalar particles** 

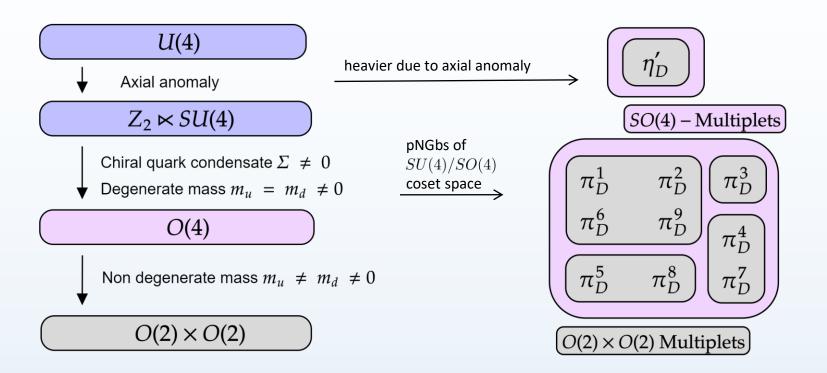
 $\dim SU(4)/SO(4) = 9$ 



### Symmetries and lightest stable particles

**Breaking pattern** 

**Pseudo-scalar particles** 



Light flavor singlets are not desirable since they may **decay in the presence of a mediator** to the SM ! Joachim Pomper

# Can $\eta'_D$ be close in mass to the $\pi_D$ ?

A large  $N_C$  argument analog to real world QCD :

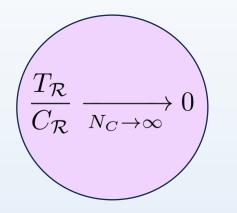
$$\partial_{\mu} j^{\mu}_{\eta'_{D}} \propto \frac{T_{\mathcal{R}}}{C_{\mathcal{R}}} \tilde{F}^{\mu\nu} F_{\mu\nu} \xrightarrow[N_{C} \to \infty]{} 0$$

# Can $\eta'_D$ be close in mass to the $\pi_D$ ?

A large  $N_C$  argument analog to real world QCD :

$$\partial_{\mu} j^{\mu}_{\eta'_D} \propto \frac{T_{\mathcal{R}}}{C_{\mathcal{R}}} \tilde{F}^{\mu\nu} F_{\mu\nu} \xrightarrow[N_C \to \infty]{} 0$$

#### Gives a sufficient criterion :



 Only satisfied for fermions in the fundamental or vector representation.

 $\Rightarrow \eta'_D$  becomes light in large  $N_C$  limit.

• Not satisfied for example for higher tensor or adjoint representations.

 $\Rightarrow \eta'_D$  expected to remain heavy.

#### Low energy effective Lagrangian

Chiral coset representative:

$$\Sigma = \exp\left(i\xi^a T_a\right) \qquad \qquad \xi^a = \begin{cases} \eta'_D / f_{\eta'_D} & \text{if } a = 0\\ \pi_D / f_{\pi_D} & \text{else} \end{cases}$$

#### Low energy effective Lagrangian

$$\mathcal{L}_{\mathrm{IR}} = \frac{f_{\pi}^{2}}{4} \operatorname{tr} \left\{ \partial_{\mu} \Sigma^{\dagger} \partial^{\mu} \Sigma \right\} + \frac{f_{\pi}^{2} - f_{\eta_{D}^{\prime}}^{2}}{4} \operatorname{tr} \left\{ \Sigma \partial_{\mu} \Sigma^{\dagger} \right\} \operatorname{tr} \left\{ \Sigma^{\dagger} \partial^{\mu} \Sigma \right\} \\ + \frac{m_{\pi}^{2} f_{\pi}^{2}}{4} \operatorname{tr} \left\{ \omega \Sigma^{\dagger} + \omega^{\dagger} \Sigma \right\} + \frac{\Delta m_{\eta_{D}^{\prime}}^{2} f_{\eta_{D}^{\prime}}^{2}}{4} \left( \ln \left( \det \left( \Sigma \right) \right) \right)^{2}$$

GMOR relation:

$$m_{\pi}^2 = \frac{m_q \langle \overline{q}q \rangle}{2f_{\pi}^2}$$

Decay constants:

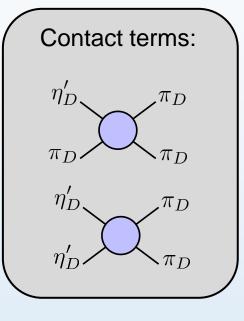
$$f_{\eta'_D} \xrightarrow[N_C \to \infty]{} f_\pi$$

 $\eta_D'$  - mass:

$$m_{\eta_D'}^2 = m_\pi^2 + \frac{f_{\eta_D'}^2}{f_\pi^2} \Delta m_{\eta_D'}^2$$
$$\Delta m_{\eta_D'}^2 \xrightarrow[N_C \to \infty]{} 0$$

#### Low energy effective Lagrangian

$$\mathcal{L}_{\mathrm{IR}} = \frac{f_{\pi}^{2}}{4} \mathrm{tr} \left\{ \partial_{\mu} \Sigma^{\dagger} \partial^{\mu} \Sigma \right\} + \frac{f_{\pi}^{2} - f_{\eta_{D}^{\prime}}^{2}}{4} \mathrm{tr} \left\{ \Sigma \partial_{\mu} \Sigma^{\dagger} \right\} \mathrm{tr} \left\{ \Sigma^{\dagger} \partial^{\mu} \Sigma \right\} \\ \left\{ + \frac{m_{\pi}^{2} f_{\pi}^{2}}{4} \mathrm{tr} \left\{ \omega \Sigma^{\dagger} + \omega^{\dagger} \Sigma \right\} \right\} + \frac{\Delta m_{\eta_{D}^{\prime}}^{2} f_{\eta_{D}^{\prime}}^{2}}{4} \left( \ln \left( \det \left( \Sigma \right) \right) \right)^{2}$$



GMOR relation:

$$m_{\pi}^2 = \frac{m_q \langle \overline{q}q \rangle}{2f_{\pi}^2}$$

Decay constants:

 $\eta'_D$  - mass:

 $f_{\eta'_D} \xrightarrow[N_C \to \infty]{} f_{\pi}$ 

$$m_{\eta_D'}^2 = m_\pi^2 + \frac{f_{\eta_D'}^2}{f_\pi^2} \Delta m_{\eta_D'}^2$$
$$\Delta m_{\eta_D'}^2 \xrightarrow[N_C \to \infty]{} 0$$

#### Anomalous action

[Wess, Zumino: 1971, Physics Letters B] [Witten: 1983, Nuclear Physics B] [Chu, Ho, Zumino: 1996, Nuclear Physics B]

#### Wess-Zumino-Witten term :

$$S_{\rm WZW} = \frac{\Gamma_{\rm WZW}}{48\pi^2 f_{\pi}} \int_{S^4} d^4x \int_0^1 d\tau \, \mathrm{tr} \left\{ \xi \left( \Sigma[\tau\xi]^{-1} d\Sigma[\tau\xi] \right)^4 \right\}$$
$$\approx \frac{\Gamma_{\rm WZW}}{15\pi^2 f_{\pi}^5} \int_{S^4} \mathrm{tr} \left\{ \pi_D d\pi_D \wedge d\pi_D \wedge d\pi_D \wedge d\pi_D \right\}$$

Non-standard form due to coset geometry:

Five point vertex between  $\pi_D$  :

 $\pi_D$ 

 $hackstructure \pi_D$ 

 $\pi_D$ 

 $\pi_D$ 

 $\pi_D$ 



Anomaly-matching:

 $\Gamma_{\rm WZW}={\rm dim}{\cal R}$ 

No participation of  $\eta'_D$  in  $3 \rightarrow 2$  DM freeze-out.

## $U(1)_D$ charge assignments

#### Charge assignment: ${\cal Q}$

Consistency:

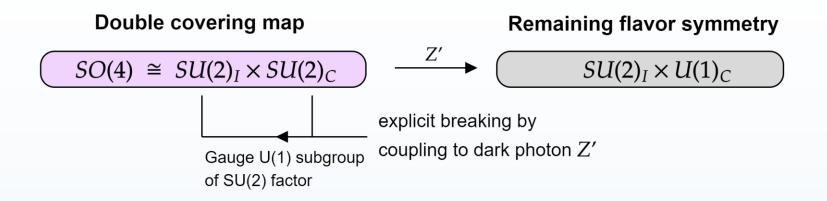
• No gauge anomalies

Pion stability:

- Maintain non-abelian global symmetry
- No anomalous  $\pi_D$  decays occur

Charge assignment  ${\cal Q}$  is physically unique!

## $U(1)_D$ charge assignments



#### Charge assignment: ${\cal Q}$

Consistency:

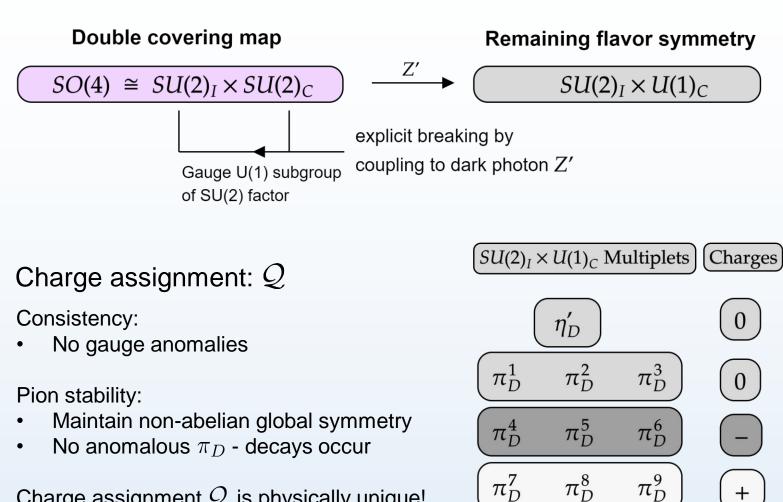
• No gauge anomalies

Pion stability:

- Maintain non-abelian global symmetry
- No anomalous  $\pi_D$  decays occur

Charge assignment  $\mathcal Q$  is physically unique!

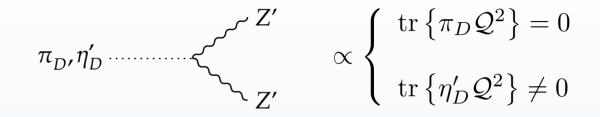
## $U(1)_D$ charge assignments



Charge assignment Q is physically unique!

# Anomalous $\eta_D'$ decay

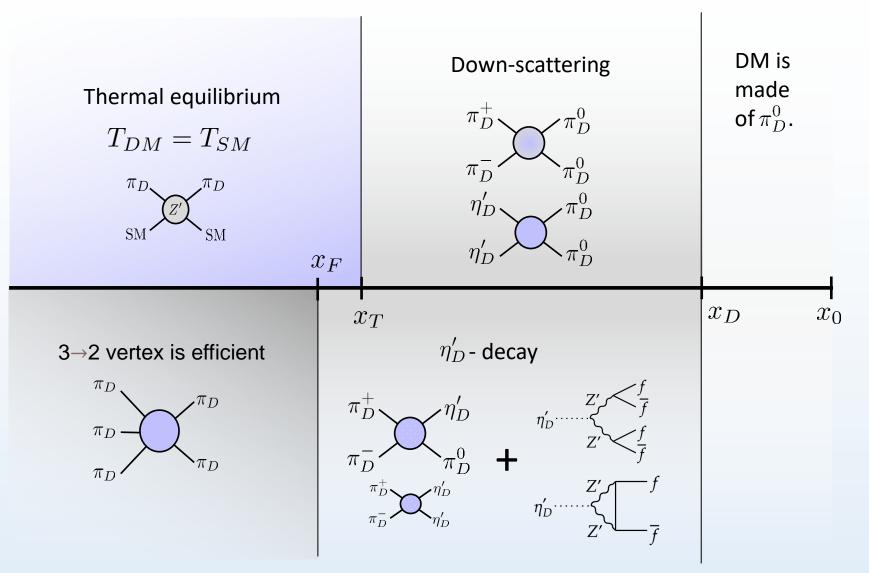
Gauged WZW term introduces anomalous vertices:



Allows for decay of  $\eta_D'$  to SM :



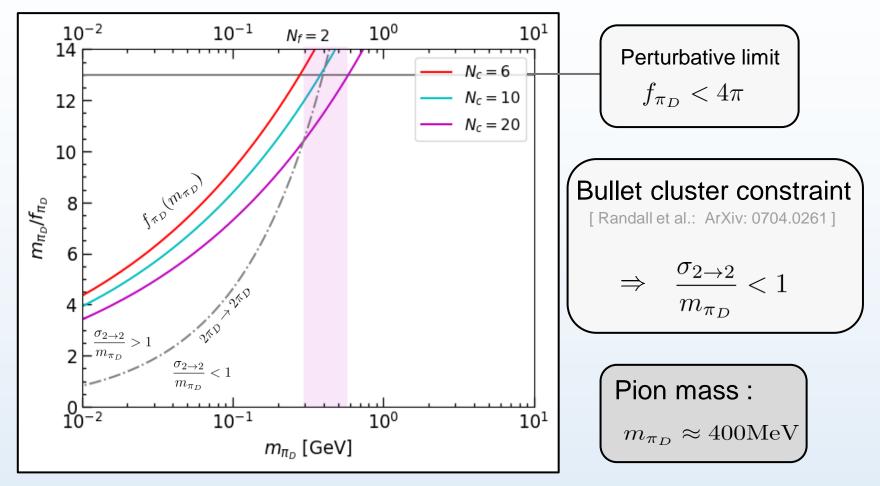
#### Freeze-out timeline



Joachim Pomper

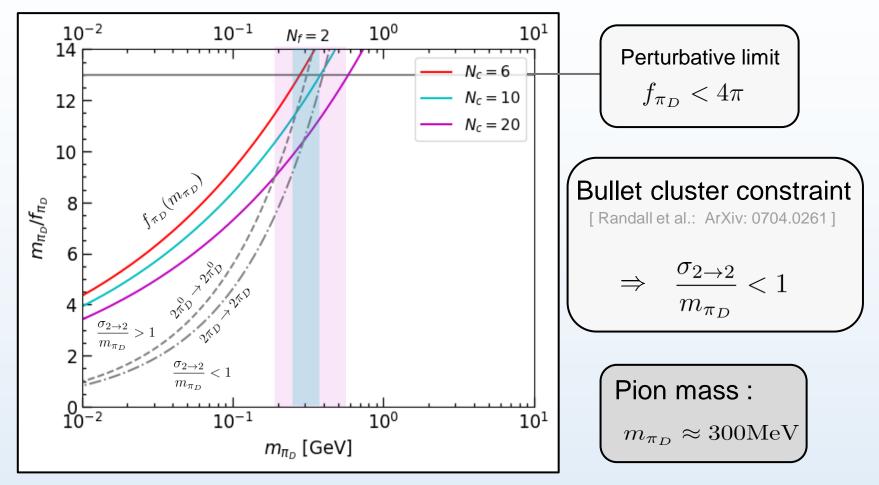
## Estimating $m_{\pi_D}$

Match pion abundance with DM relic density today:  $f_{\pi_D} = f_{\pi_D}(m_{\pi_D})$ 

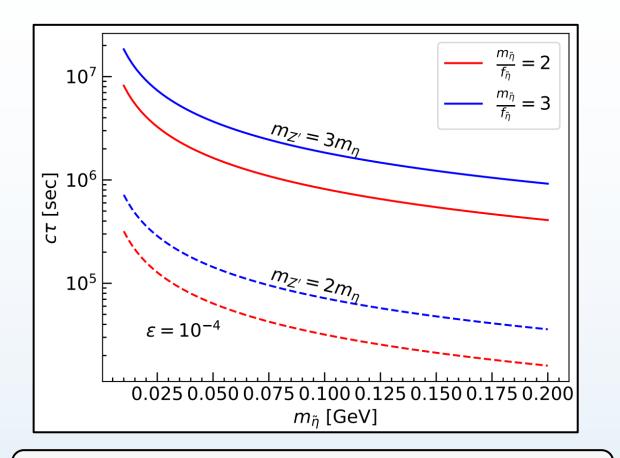


## Estimating $m_{\pi_D}$

Match pion abundance with DM relic density today:  $f_{\pi_D} = f_{\pi_D}(m_{\pi_D})$ 

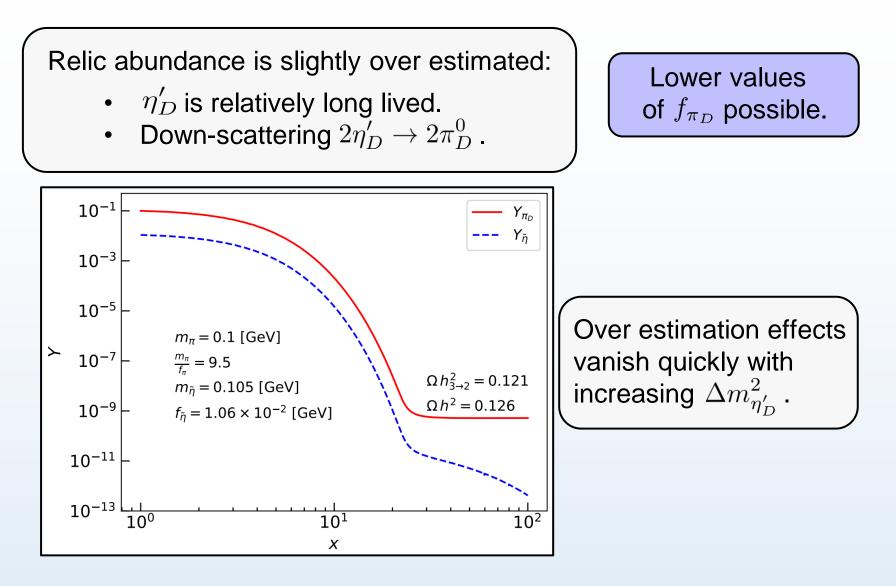


# Estimates of $\eta_D'$ lifetime



On the timescale of freeze-out  $\eta_D'$  is long lived.

# Effects of light $\eta'_D$ on the relic density estimate



### Summary

- Dark QCD with real representations is a viable dark matter model for "large" values of  $N_C$ .
- Considering down-scattering in the cosmic evolution has effects on the model.
- For large  $N_C$  the  $\eta'_D$  might become light.
  - $\eta'_D$  is stable and leads to over estimation of DM relic density.
  - The inclusion of  $\eta_D'$  improves the model.
  - Minor quantitive / no qualitative changes of the original SIMP model.

#### Ready for your questions

#### The axial anomaly and discrete symmetries

General form of Axial Anomaly

$$\mathcal{A}_{\text{Axial}}[\epsilon, A] = -2i T_{\mathcal{R}} \operatorname{tr}\{\epsilon\} \mathcal{Q}_{\text{Topo}}[A]$$

Quantum chiral transfomrmations

$$U(4) \ni U = \exp(-\epsilon) \longrightarrow D\psi D\psi \stackrel{U}{\mapsto} e^{-i\mathcal{A}[\epsilon,A]} D\psi D\psi$$

$$\downarrow$$

$$Z_{2T_{\mathcal{R}}} \ltimes SU(4) \qquad \det(U) = \exp\left(-i\frac{\pi k}{T_{\mathcal{R}}}\right) \Leftrightarrow \exp(-i\mathcal{A}[\epsilon,A]) = 1$$

$$k \in \{0, ..., 2T_{\mathcal{R}} - 1\}$$
Dynkin Index  $T_{\mathcal{R}}$ 

SU(N) - Fund.SO(N) - Vec.Sp(2N) - FundSp(2N) - AT2T
$$T_R = 1/2$$
 $T_R = 1$  $T_R = 1/2$  $T_R = N-1$ 

## 't Hooft large N considerations of $\eta_D'$

**Idea:** Compare for example SO(N)-vector theories for N very large.

**Technicality:** Define 't Hooft coupling  $\lambda$ 

 $\lambda := C_{adj}(N) g^2 \qquad \lambda(\mu_{UV}) = \text{fixed}$ 

 $\rightarrow$  Running of  $\lambda$  is independent of N up to 1/N corrections.

 $\rightarrow$  A controlable perturbative scale 1/N is introduced into the theory.

Axial anomaly in the chiral limit:

$$\partial_{\mu} J^{\mu}_{\eta'_{D}} = - \begin{array}{c} \frac{T(R)}{C_{adj}} & \frac{\lambda N_{F}}{32\pi^{2}} \ \epsilon^{\mu\nu\rho\sigma} \ G^{\alpha}_{\mu\nu} G_{\rho\sigma} \ \beta \end{array}$$
  
Gives potential large N suppression
$$\frac{T(R)}{C_{adj}} & \frac{1}{N \to \infty} 0 \quad \text{must hold for the anomaly to vanish in large N limit}$$

17/14

Т

Example:

SU(N)-Fund.

 $\lambda := N g^2$  $g^2 \longrightarrow 0$ 

 $\frac{T(R)}{C_{\rm adj}}$ 

 $=\frac{1}{2N}$ 

4th Homotopy group of SU(4)/SO(4)

\_

|               | $\pi_3$                      | $\pi_4$                          | $\pi_5$                          |
|---------------|------------------------------|----------------------------------|----------------------------------|
| <i>SO</i> (4) | $\mathbb{Z}\oplus\mathbb{Z}$ | $\mathbb{Z}_2\oplus\mathbb{Z}_2$ | $\mathbb{Z}_2\oplus\mathbb{Z}_2$ |
| <i>SU</i> (4) | $\mathbb{Z}$                 | 0                                | $\mathbb{Z}$                     |

Fibration:

$$SO(4) 
ightarrow SU(4) 
ightarrow SU(4)/SO(4)$$

Long exact sequence:

• 
$$Ker(h_2) = Img(h_1) = 0 \rightarrow h_2$$
 is injective

• 
$$\pi_4(SU(4)/SO(4)) \cong Img(h_2) = Ker(h_3)$$

•  $Ker(h_3) \neq 0$ 

$$\Rightarrow \frac{\pi_4(SU(4)/SO(4))}{\text{cannot be trivial}}$$