

The 3-D nucleon structure in momentum space is still not known yet!

Parton intrinsic transverse momentum?
Spin and $k_{\perp}$ correlations?
Angular momentum of partons?
Spatial distribution?

AZIMUTHAL ASYMMETRY IN $J / \psi$ PRODUCTION IN ELECTRONPROTON COLLISION AT EIC

Raj Kishore ${ }^{\dagger}$
${ }^{\dagger}$ Ruder Boskovic Institute, Zagreb


ACHT-2023 Workshop 27-29 September, Leibnitz


## PLAN OF TALK

Parton Distribution function: PDFs, TMDs (Gluon TMDs)
Azimuthal asymmetries in $J / \psi-j e t$ and $J / \psi-\gamma$ pair production in ep scattering at EIC
Numerical estimates

Conclusion

DIS process: usual way of exploring the proton structure


Naïve parton model: $\quad d \sigma^{l p \rightarrow l^{\prime} X}=\sum_{q} f_{q}(x) \otimes d \sigma^{l q \rightarrow l^{\prime} q}$
Within the Parton model of nucleons we defined parton distribution functions (PDFs).
$>$ Collinear parton distribution functions, $f_{a}\left(x, Q^{2}\right)$, gives the number density of partons with momentum fraction $x$ and that depends on scale $Q^{2}$, gives the l-D picture of a nucleon.

## Transverse momentum-dependent distribution and fragmentation functions

$>$ Introducing a new concept: Transverse momentum dependent, distribution functions (TMD-PDFs) and fragmentation functions (TMD-FFs).
$\square$ TMD-PDFs (Transverse Momentum Dependent Parton Distribution Functions): $f\left(x, k_{\perp}, Q^{2}\right)$ gives the number density of partons, with their intrinsic transverse motion and spin, inside a nucleon.

$$
\begin{aligned}
\boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right): & \text { Sivers effect } \\
\boldsymbol{s}_{\mathrm{q}} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right): & \text { Boer-Mulders effect }
\end{aligned}
$$


$\square$ TMD-FFs (Transverse Momentum Dependent Fragmentation Functions): $\mathrm{D}\left(z, p_{\perp}\right)$ gives the number density of hadrons, with their momentum, originated in the fragmentation of a parton.

$$
\boldsymbol{s}_{\mathrm{q}} \cdot\left(\boldsymbol{p}_{\mathrm{q}} \times \boldsymbol{p}_{\perp}\right): \text { Collins effect }
$$



## Cluon TIMDs

Gluon-gluon correlator at leading twist

$$
\Gamma^{+i ;+j}\left(x, \boldsymbol{k}_{T} ; P, S\right)=\int \frac{d \xi^{-} d^{2} \xi_{\perp}}{(2 \pi)^{3}} e^{i k \cdot \xi}\langle P, S| \operatorname{Tr}\left[F^{+i}(0) W_{[0, \xi]} F^{+j}(\xi) W_{[\xi, 0]}\right]|P, S\rangle_{\mid \xi^{+}=0}
$$

- Parameterizations: for the unpolarized (U) and transversely polarized (T) target
$\Gamma_{U}^{i j}\left(x, k_{T}^{2}\right)=\frac{x}{2}\left\{-g_{T}^{i j} f_{1}^{g}\left(x, k_{T}^{2}\right)+\left(\frac{k_{T}^{i} k_{T}^{j}}{M_{P}^{2}}+g_{T}^{i j} \frac{k_{T}^{2}}{2 M_{P}^{2}}\right) h_{1}^{\perp g}\left(x, k_{T}^{2}\right)\right\}$
$\Gamma_{T}^{i j}\left(x, k_{T}^{2}\right)=\frac{x}{2}\left\{-g_{T}^{i j} \frac{\epsilon_{T}^{\rho \sigma} k_{T \rho} S_{T \sigma}}{M_{p}} f_{1 T}^{\perp g}\left(x, k_{T}^{2}\right)+\ldots\right\}$



## GLUON TMDS: (BOER-MULDERS) $h_{1}^{\perp g}\left(x, k_{T}^{2}\right)$ AND (GSF) $\Delta^{N} f_{g / P^{\uparrow}}\left(x, k_{T}^{2}\right)$

$>$ Gluon Boer-Mulders function is associated with a symmetric tensor structure

$$
\frac{1}{2}\left(\frac{2 k_{T}^{i} k_{T}^{j}}{k_{T}^{2}}-\delta^{i j}\right)=\frac{1}{2}\left(\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi \\
\sin 2 \phi & -\cos 2 \phi
\end{array}\right)
$$

$>$ Interpret $h_{1}^{\perp g}\left(x, k_{T}^{2}\right)$ as "azimuthal correlated" gluon distribution function.
$>$ It affects the unpolarized cross section and cause azimuthal asymmetries: $\langle\cos (2 \phi)\rangle,\langle\cos (4 \phi)\rangle$
$>$ GSF describes the number density of unpolarized gluon inside a transversely polarized nucleon.

$$
\Delta^{N} f_{g / P^{\uparrow}}\left(x, \boldsymbol{k}_{T}\right)=\widehat{f_{g}}\left(x, \boldsymbol{k}_{T} ; \boldsymbol{S}_{T}\right)-\widehat{f_{g}}\left(x, \boldsymbol{k}_{T} ;-\boldsymbol{S}_{T}\right) \equiv \Delta^{N} f_{g}\left(x, k_{T}\right)\left(\widehat{\boldsymbol{P}} \times \widehat{\boldsymbol{k}}_{T}\right) \cdot \widehat{\boldsymbol{s}}_{T}
$$

## SINGLE SPIN ASYMNEETRY (SSA) AND AZIMUTHALL ASYMMETRY

The TMDs can be studied in Drell-Yan (DY) ( $p p \rightarrow l l^{\prime}$ ), semi-inclusive deep inelastic scattering (SIDIS) ( $e p \rightarrow e^{\prime} h X$ ) and electron-positron ( $e^{+} e^{-} \rightarrow h$ ) annihilation processes.
$>$ Transverse SSA in a hadronic scattering process: $A+B^{\uparrow} \rightarrow C+X$

$$
A_{N}=\frac{d \sigma^{\uparrow}\left(\boldsymbol{P}_{T}\right)-d \sigma^{\downarrow}\left(\boldsymbol{P}_{T}\right)}{d \sigma^{\uparrow}\left(\boldsymbol{P}_{T}\right)+d \sigma^{\downarrow}\left(\boldsymbol{P}_{\boldsymbol{T}}\right)} \equiv \frac{d \sigma^{\uparrow}\left(\boldsymbol{P}_{T}\right)-d \sigma^{\uparrow}\left(-\boldsymbol{P}_{T}\right)}{2 d \sigma^{\mathrm{unp}}\left(P_{T}\right)}
$$


$>$ Azimuthal asymmetry $:\left\langle\cos \left(2 \phi_{h}\right)\right\rangle=\frac{\int d \phi_{h} \cos \left(2 \phi_{h}\right) d \sigma}{\int d \phi_{h} d \sigma}$

## $J / \psi$ PRODUCTION IN ep SCATTERING

$>$ Consider the electroproduction processes: $e(l)+p(P) \rightarrow e\left(l^{\prime}\right)+J / \psi\left(P_{\psi}\right)+X$


$$
\gamma^{*}-p \text { c.m. frame }
$$

$d \sigma \propto[T M D-P D F] \otimes d \hat{\sigma} \otimes[$ Hadronization $]$


## A BACK-TO-BACK $J / \psi-j e t$ AND $J / \psi-\gamma$ PRODUCTITON IN ep SCATTERING

$>$ Consider the electroproduction processes: $\boldsymbol{e}(\boldsymbol{l})+\boldsymbol{p}(\boldsymbol{P}) \rightarrow \boldsymbol{e}\left(\boldsymbol{l}^{\prime}\right)+J / \psi\left(\boldsymbol{P}_{\psi}\right)+\gamma\left(\boldsymbol{p}_{\gamma}\right)+X$

$$
e(l)+p(P) \rightarrow e\left(l^{\prime}\right)+J / \psi\left(P_{\psi}\right)+\operatorname{jet}\left(p_{j}\right)+X
$$



$$
\gamma^{*}-p \text { c.m. frame }
$$



## A BACK-TO-BACK $J / \psi-j e t$ AND $J / \psi-\gamma$ PRODUCTION IN ep SCATTERING

> Assume TMD factorization.
$>p-\gamma^{*}$ center of mass frame which move along $z$ direction
$>\boldsymbol{P}_{\boldsymbol{\psi} \perp}$ and $\boldsymbol{P}_{\boldsymbol{j} \perp}$ are transverse momentum of $J / \psi$ and jet respectively in the plane orthogonal to the proton momentum.


$$
\boldsymbol{q}_{T}=\boldsymbol{P}_{\psi \perp}+\boldsymbol{P}_{j \perp}, \quad K_{\perp}=\frac{\boldsymbol{P}_{\psi \perp}-\boldsymbol{P}_{j \perp}}{2} \quad \phi_{T} \text { denotes azimuthal angle of } \boldsymbol{q}_{\boldsymbol{T}}
$$

$>$ In the case where $\left|\boldsymbol{q}_{\boldsymbol{T}}\right| \ll\left|K_{\perp}\right|$, the $J / \psi$ and jet are almost back-to-back in the transverse plane.

## CROSS SECTION: $e p \rightarrow e+J / \psi+j e t+X$

$$
\begin{array}{r}
d \sigma=\frac{1}{2 s} \frac{d^{3} l^{\prime}}{(2 \pi)^{3} 2 E_{l^{\prime}}} \frac{d^{3} P_{\psi}}{(2 \pi)^{3} 2 E_{\psi}} \frac{d^{3} P_{j}}{(2 \pi)^{3} 2 E_{j}} \int d x d^{2} p_{T}(2 \pi)^{4} \delta^{4}\left(q+p_{g}-P_{\psi}-P_{j}\right) \times \\
\frac{1}{Q^{4}} L^{\mu \mu^{\prime}}(l, q) \Phi_{g}^{v v^{\prime}}\left(x, p_{T}^{2}\right) M_{\mu \nu}^{g \gamma^{*} \rightarrow J / \psi g_{M^{\prime}}^{* g \gamma^{*} \rightarrow J / \psi g}} \underset{\mu^{\prime}}{* g}
\end{array}
$$

$$
\text { Lepton tensor: } L^{\mu \mu^{\prime}}(l, q)=e^{2}\left(-g^{\mu \mu^{\prime}} Q^{2}+2\left(l^{\mu} l^{\prime \mu^{\prime}}+l^{\mu^{\prime}} l^{\mu}\right)\right)
$$

Parameterization of gluon correlator for unpolarized proton target at 'Leading Twist'

$$
\begin{gathered}
\Phi_{g}^{v v^{\prime}}\left(x, \boldsymbol{p}_{T}^{2}\right)=\frac{1}{2 x}\left[-g_{\perp}^{v \nu^{\prime}} f_{1}^{g}\left(x, \boldsymbol{p}_{T}^{2}\right)+\left(\frac{p_{T}^{v} p_{T}^{v^{\prime}}}{M_{p}^{2}}+g_{\perp}^{v \nu^{\prime}} \frac{\boldsymbol{p}_{T}^{2}}{2 M_{p}^{2}}\right) h_{1}^{\perp g}\left(x, \boldsymbol{p}_{T}^{2}\right)\right] \\
\text { Unpolarized gluon distribution }
\end{gathered}
$$

## QUARKONIUM PRODUCTION

$>$ Quarkonium is a bound state of heavy quark and anti-quark ( $Q \bar{Q}$ )
Describes conversion of $Q \bar{Q}[n]$ states
into final quarkonium state.

NRQCD factorization
Non-perturbative; long distance matrix elements (LDMEs)

$$
\begin{aligned}
& d \sigma^{a b \rightarrow J / \psi}=\sum_{n} d \hat{\sigma}[a b \rightarrow c \bar{c}(n)]\left\langle\left. 0\right|^{\downarrow} \mathcal{O}_{n}^{J / \psi} \mid 0\right\rangle \\
& \text { Perturbative short distance coefficient }
\end{aligned}
$$

Cross section in particular color, angular momentum and spin
state " $n$ ": ${ }^{2 S+1} L_{J}$, calculated by perturbative QCD

## fEYNMAN DIAGRAMS

Gluon initiated hard process: $\gamma^{*} g \rightarrow Q \bar{Q} g$, contributes significantly over the quark(anti-quark) initiated hard process: $\gamma^{*} q(\bar{q}) \rightarrow Q \bar{Q} q(\bar{q})$, in the small- $x$ domain.


Tree level Feynman diagrams for the hard process: $\gamma^{*}+g \rightarrow c+\bar{c}+g$

## AMPLITUDE CALCULATIONS USING NROCD

The amplitude can be written as

$$
\begin{aligned}
& M\left(\gamma^{*} g \rightarrow Q \bar{Q}\left[{ }^{2 S+1} L_{J}^{(1,8)}\right]\left(P_{\psi}\right)+g\left(P_{j}\right)\right) \\
& =\sum_{L_{z} S_{z}} \int \frac{d^{3} k}{(2 \pi)^{3}} \Psi_{L L_{z}}(k)\left\langle L L_{z} ; S S_{z} \mid J J_{z}\right\rangle \operatorname{Tr}\left[\mathcal{O}\left(q, p, P_{\psi}, k\right) \mathcal{P}_{S S_{z}}\left(P_{\psi}, k\right)\right]
\end{aligned}
$$

$$
\mathcal{O}\left(q, p, P_{\psi}, k\right): \text { amplitude for production of } Q \bar{Q} \text { pair. } \mathcal{O}\left(q, p, P_{\psi}, k\right)=\sum_{m=1}^{8} C_{m} \mathcal{O}_{m}\left(q, p, P_{\psi}, k\right)
$$

The spin projection operator, $\mathcal{P}_{S S_{z}}\left(P_{\psi}, k\right)$, projects the spin triplet and spin singlet states of $Q \bar{Q}$ pair

$$
\begin{aligned}
\mathcal{P}_{S S_{z}}\left(P_{\psi}, k\right) & =\sum_{S_{1} s_{2}}\left\langle\frac{1}{2} s_{1} ; \left.\frac{1}{2} s_{2} \right\rvert\, S S_{z}\right\rangle v\left(\frac{P_{\psi}}{2}-k, s_{1}\right) \bar{u}\left(\frac{P_{\psi}}{2}+k, s_{2}\right) \\
& =\frac{1}{4 M_{\psi}^{3 / 2}}\left(-\not{ }_{\psi}+2 \not k+M_{\psi}\right) \Pi_{\mathrm{SS}_{\mathrm{z}}}\left(\not \phi_{\psi}+2 \not k+M_{\psi}\right)+O\left(k^{2}\right)
\end{aligned}
$$

$$
\Pi_{S S_{Z}}=\gamma^{5} \text { for spin singlet }(S=0)
$$

$$
\Pi_{S S_{z}}=\epsilon_{S_{Z}}^{\mu}\left(P_{\psi}\right) \gamma_{\mu} \text { for spin triplet }(S=1)
$$

## Amplitude Calculations

Since, $k \ll P_{h}$, amplitude expanded in Taylor series about $k=0$

First term in the expansion gives the S-states $(L=0, J=0,1)$. The linear term in $k$ gives the P-states ( $L=1, J=0,1,2$ ).

The S-states amplitude :

$$
M\left[{ }^{2 S+1} S_{J}^{(1,8)}\right]\left(P_{\psi}, k\right)=\frac{1}{\sqrt{4 \pi}} R_{0}(0) \operatorname{Tr}\left[\left.\mathcal{O}\left(q, p, P_{\psi}, k\right) \mathcal{P}_{S S_{z}}\left(P_{\psi}, k\right)\right|_{k=0}\right.
$$

The P-states
amplitude :

$$
\begin{gathered}
M\left[{ }^{2 S+1} P_{J}^{(1,8)}\right]\left(P_{\psi}, k\right)=-i \sqrt{\frac{3}{4 \pi}} R_{1}^{\prime}(0) \sum_{L} \epsilon_{L_{z}}^{\alpha}\left(P_{\psi}\right)\left\langle L L_{z} ; S S_{z} \mid J J_{z}\right\rangle \operatorname{Tr}\left[\mathcal{O}_{\alpha}(0) \mathcal{P}_{S S_{z}}(0)+\mathcal{O}(0) \mathcal{P}_{S S_{z} \alpha}(0)\right] \\
\mathcal{O}_{\alpha}(0)=\left.\frac{\partial}{\partial k^{\alpha}} \mathcal{O}\left(q, p, P_{\psi}, k\right)\right|_{k=0} \quad \mathcal{P}_{S S_{z} \alpha}(0)=\left.\frac{\partial}{\partial k^{\alpha}} \mathcal{P}_{S S_{z}}\left(q, p, P_{\psi}, k\right)\right|_{k=0}
\end{gathered}
$$

Contribution: ${ }^{3} S_{1}^{(1)},{ }^{3} S_{1}^{(8)},{ }^{1} S_{0}^{(8)},{ }^{3} P_{j(=0,1,2)}^{(8)}$

## FINAL CROSS SECTION: $e p \rightarrow e+J / \psi+j e t+X$ OR $e p \rightarrow e+J / \psi+\gamma+X$

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} z \mathrm{~d} y \mathrm{~d} x_{B} \mathrm{~d}^{2} \boldsymbol{q}_{T} \mathrm{~d}^{2} \boldsymbol{K}_{\perp}} \equiv & \mathrm{d} \sigma\left(\phi_{S}, \phi_{T}, \phi_{\perp}\right)=\mathrm{d} \sigma^{U}\left(\phi_{T}, \phi_{\perp}\right)+\mathrm{d} \sigma^{T}\left(\phi_{S}, \phi_{T}, \phi_{\perp}\right) \\
\mathrm{d} \sigma^{U}= & \mathcal{N}\left[\left(\mathcal{A}_{0}+\mathcal{A}_{1} \cos \phi_{\perp}+\mathcal{A}_{2} \cos 2 \phi_{\perp} \sqrt{f_{1}^{g}\left(x, \boldsymbol{q}_{T}^{2}\right)}+\left(\mathcal{B}_{0} \cos 2 \phi_{T}+\mathcal{B}_{1} \cos \left(2 \phi_{T}-\phi_{\perp}\right)\right.\right.\right. \\
& \left.\left.+\mathcal{B}_{2} \cos 2\left(\phi_{T}-\phi_{\perp}\right)+\mathcal{B}_{3} \cos \left(2 \phi_{T}-3 \phi_{\perp}\right)+\mathcal{B}_{4} \cos \left(2 \phi_{T}-4 \phi_{\perp}\right)\right) \frac{\boldsymbol{q}_{T}^{2}}{M_{p}^{2}} \frac{h_{1}^{\perp g}\left(x, \boldsymbol{q}_{T}^{2}\right)}{}\right] \\
\mathrm{d} \sigma^{T}= & \mathcal{N}\left|\boldsymbol{S}_{T}\right|\left[\sin \left(\phi_{S}-\phi_{T}\right)\left(\mathcal{A}_{0}+\mathcal{A}_{1} \cos \phi_{\perp}+\mathcal{A}_{2} \cos 2 \phi_{\perp}\right) \frac{\left|\boldsymbol{q}_{T}\right|}{M_{p}} f_{1 T}^{\perp g}\left(x, \boldsymbol{q}_{T}^{2}\right)\right. \\
& +\cos \left(\phi_{S}-\phi_{T}\right)\left(\mathcal{B}_{0} \sin 2 \phi_{T}+\mathcal{B}_{1} \sin \left(2 \phi_{T}-\phi_{\perp}\right)+\mathcal{B}_{2} \sin 2\left(\phi_{T}-\phi_{\perp}\right)\right. \\
& \left.+\mathcal{B}_{3} \sin \left(2 \phi_{T}-3 \phi_{\perp}\right)+\mathcal{B}_{4} \sin \left(2 \phi_{T}-4 \phi_{\perp}\right)\right) \frac{\left|\boldsymbol{q}_{T}\right|^{3}}{M_{p}^{3}} h_{1 T}^{\perp g}\left(x, \boldsymbol{q}_{T}^{2}\right) \\
& +\left(\mathcal{B}_{0} \sin \left(\phi_{S}+\phi_{T}\right)+\mathcal{B}_{1} \sin \left(\phi_{S}+\phi_{T}-\phi_{\perp}\right)+\mathcal{B}_{2} \sin \left(\phi_{S}+\phi_{T}-2 \phi_{\perp}\right)\right. \\
& \left.\left.+\mathcal{B}_{3} \sin \left(\phi_{S}+\phi_{T}-3 \phi_{\perp}\right)+\mathcal{B}_{4} \sin \left(\phi_{S}+\phi_{T}-4 \phi_{\perp}\right)\right) \frac{\left|\boldsymbol{q}_{T}\right|}{M_{p}} h_{1 T}^{g}\left(x, \boldsymbol{q}_{T}^{2}\right)\right],
\end{aligned}
$$

Coefficients: $A_{i} \sim A_{i}^{\gamma g \rightarrow c \bar{c}[n] g}\langle 0| O_{n}^{J / \psi}|0\rangle$ and $B_{i} \sim B_{i}^{\gamma g \rightarrow c \bar{c}[n] g}\langle 0| O_{n}^{J / \psi}|0\rangle$ comes from partonic processes.

## ASYMMETRY CALCULHTIONS

Weighted azimuthal asymmetry:

$$
A^{W\left(\phi_{S}, \phi_{T}\right)} \equiv 2 \frac{\int \mathrm{~d} \phi_{S} \mathrm{~d} \phi_{T} \mathrm{~d} \phi_{\perp} W\left(\phi_{S}, \phi_{T}\right) \mathrm{d} \sigma\left(\phi_{S}, \phi_{T}, \phi_{\perp}\right)}{\int \mathrm{d} \phi_{S} \mathrm{~d} \phi_{T} \mathrm{~d} \phi_{\perp} \mathrm{d} \sigma\left(\phi_{S}, \phi_{T}, \phi_{\perp}\right)}
$$

Azimuthal modulations probe Boer-Mulder gluon TMD:
U. D'Alesio (2019)

$$
A^{\cos 2 \phi_{T}}=\frac{\boldsymbol{q}_{T}^{2}}{M_{p}^{2}} \frac{\mathcal{B}_{0}}{\mathcal{A}_{0}} \frac{h_{1}^{\perp g}\left(x, \boldsymbol{q}_{T}^{2}\right)}{\left(f_{1}^{g}\left(x, \boldsymbol{q}_{T}^{2}\right)\right.} \quad A^{\cos 2\left(\phi_{T}-\phi_{\perp}\right)}=\frac{\boldsymbol{q}_{T}^{2}}{M_{p}^{2}} \frac{\mathcal{B}_{2}}{\mathcal{A}_{0}} \frac{h_{1}^{\perp g}\left(x, \boldsymbol{q}_{T}^{2}\right)}{\left(f_{1}^{g}\left(x, \boldsymbol{q}_{T}^{2}\right)\right.}
$$

Azimuthal modulations which can be exploited to extract polarized TMDs $f_{1 T}^{\perp g}, h_{1}^{g}$ and $h_{1 T}^{\perp g}$

$$
\begin{gathered}
A^{\sin \left(\phi_{S}-\phi_{T}\right)}=\frac{\left|\boldsymbol{q}_{T}\right| f_{1 T}^{\perp g}\left(x, \boldsymbol{q}_{T}^{2}\right)}{M_{p}\left(x, \boldsymbol{q}_{T}^{2}\right)} \\
A^{\sin \left(\phi_{S}-3 \phi_{T}\right)}=-\frac{\left|\boldsymbol{q}_{T}\right|^{3}}{2 M_{p}^{3}} \frac{\mathcal{B}_{0}}{\mathcal{A}_{0}} \frac{h_{1 T}^{\perp g}\left(x, \boldsymbol{q}_{T}^{2}\right)}{f_{1}^{g}\left(x, \boldsymbol{q}_{T}^{2}\right)}
\end{gathered}
$$

## GAUSSIAN PARAMETERIZATION (GP)

$f_{1}^{g}\left(x, \boldsymbol{q}_{T}^{2}\right)$ and $h_{1}^{\perp g}\left(x, \boldsymbol{q}_{T}^{2}\right)$ are assumed to be factorized as function of $x$, i.e. collinear PDFs and a Gaussian function of the transverse momentum $q_{T}$.
$f_{1}^{g}\left(x, \boldsymbol{q}_{T}^{2}\right)=f_{1}^{g}(x, \mu) \frac{1}{\pi\left\langle q_{T}^{2}\right\rangle^{2}} e^{-\frac{q_{T}^{2}}{\left\langle q_{T}^{2}\right\rangle}}$
$h_{1}^{\perp g}\left(x, \boldsymbol{q}_{T}^{2}\right)=\frac{M_{P}^{2} f_{1}^{g}(x, \mu)}{\pi\left\langle q_{T}^{2}\right\rangle^{2}} \frac{2(1-r)}{r} e^{1-\frac{q_{T}^{2}}{r\left\langle q_{T}^{2}\right\rangle}}$
$r(0<r<1)$ and $\left\langle q_{T}^{2}\right\rangle$ are parameters
We took, $r=1 / 3$ and $\left\langle q_{T}^{2}\right\rangle=0.25$

$$
\begin{aligned}
& \Delta^{N} f_{g / p^{\uparrow}}\left(x, q_{T}\right)=\left(-\frac{2\left|\boldsymbol{q}_{T}\right|}{M_{P}}\right) f_{1 T}^{\perp g}\left(x, q_{T}\right) \\
&=2 \frac{\sqrt{2 e}}{\pi} \mathcal{N}_{g}(x) f_{g / p}(x) \sqrt{\frac{1-\rho}{\rho}} q_{T} \frac{e^{-q_{T}^{2} / \rho\left\langle q_{T}^{2}\right\rangle}}{\left\langle q_{T}^{2}\right\rangle^{3 / 2}} \\
& \mathcal{N}_{g}(x)=N_{g} x^{\alpha}(1-x)^{\beta} \frac{(\alpha+\beta)^{(\alpha+\beta)}}{\alpha^{\alpha} \beta^{\beta}} \\
& N_{g}=0.25, \quad \alpha=0.6, \quad \beta=0.6, \quad \rho=0.1
\end{aligned}
$$

Gluon TMDs satisfy positivity bounds:

$$
\begin{aligned}
& \frac{\boldsymbol{q}_{T}^{2}}{2 M_{P}}\left|h_{1}^{\perp g}\left(x, \boldsymbol{q}_{T}^{2}\right)\right| \leq f_{1}^{g}\left(x, \boldsymbol{q}_{T}^{2}\right) \\
& \frac{\left|\boldsymbol{q}_{T}\right|}{M_{P}}\left|f_{1 T}^{\perp g}\left(x, \boldsymbol{q}_{T}^{2}\right)\right| \leq f_{1}^{g}\left(x, \boldsymbol{q}_{T}^{2}\right)
\end{aligned}
$$

## PARAMETERIZATION: SPECTATOR MODEL (SM)

Nucleon is assumed to emit a gluon and the remaining is treated as a single on-shell particle called spectator particle.

Mass of the spectator particle is allowed to take a continuous values described by a spectral function, $\rho_{X}\left(M_{X}\right)$

$$
\text { Gluon TMDs: } \quad F^{g}\left(x, q_{t}^{2}\right)=\int_{M}^{\infty} \mathrm{d} M_{X} \rho_{X}\left(M_{X}\right) \hat{F}^{g}\left(x, q_{t}^{2} ; M_{X}\right)
$$

$$
\rho_{X}\left(M_{X}\right)=\mu^{2 a}\left[\frac{A}{B+\mu^{2 b}}+\frac{C}{\pi \sigma} e^{-\frac{\left(M_{X}-D\right)^{2}}{\sigma^{2}}}\right]
$$

where, $A, B, C, D, a, b, \sigma$ are free parameters
At leading-twist, T-even unpolarized and linearly polarized gluon TMDs can be written as

$$
\begin{array}{r}
\hat{f}_{1}^{g}\left(x, \boldsymbol{q}_{t}^{2} ; M_{X}\right)=\left[\left(2 M x g_{1}-x\left(M+M_{X}\right) g_{2}\right)^{2}\left[\left(M_{X}-M(1-x)\right)^{2}+\boldsymbol{q}_{t}^{2}\right]+2 \boldsymbol{q}_{t}^{2}\left(\boldsymbol{q}_{t}^{2}+x M_{X}^{2}\right) g_{2}^{2}+2 \boldsymbol{q}_{t}^{2} M^{2}(1-x)\left(4 g_{1}^{2}-x g_{2}^{2}\right)\right] \times \\
{\left[(2 \pi)^{3} 4 x M^{2}\left(L_{X}^{2}(0)+\boldsymbol{q}_{t}^{2}\right)^{2}\right]^{-1}}
\end{array}
$$

$$
\hat{h}_{1}^{\perp g}\left(x, \boldsymbol{q}_{t}^{2} ; M_{X}\right)=\left[4 M^{2}(1-x) g_{1}^{2}+\left(L_{X}^{2}(0)+\boldsymbol{q}_{t}^{2}\right) g_{2}^{2}\right] \times\left[(2 \pi)^{3} x\left(L_{X}^{2}(0)+\boldsymbol{q}_{t}^{2}\right)^{2}\right]^{-1}
$$

Where $g_{1,2}\left(p^{2}\right)$ are model-dependent form factors, given as: $g_{1,2}\left(p^{2}\right)=\kappa_{1,2} \frac{p^{2}(1-x)^{2}}{\left(q_{t}^{2}+L_{X}^{2}\left(\Lambda_{X}^{2}\right)\right)^{2}}$
$p^{2}$ is gluon momentum, $\kappa_{1,2}$ and $\Lambda_{X}$ are normalization and cut-off parameters respectively, and $L_{X}^{2}\left(\Lambda_{X}^{2}\right)=x M_{X}^{2}+(1-x) \Lambda_{X}^{2}-x(1-x) M^{2}$

## RESULTS: $J / \psi-j e t$ PRODUCTITON

$\cos 2 \phi_{t}$ azimuthal asymmetry in
(A) Gaussian Parameterization
(B) Spectator Model

Kinematics: $\sqrt{s}=140 \mathrm{GeV}$
$0.1<y<1, \quad 0<q_{t}<1 \mathrm{GeV}$

$$
Q=\sqrt{M_{\psi}^{2}+K_{t}^{2}}
$$

Plots as function of $K_{t}$ and $y$ are at fixed $z=0.7$

Significant contribution to $A^{\cos 2 \phi_{t}}$ coming from color octet states.
(A)

(B)


Asymmetry hardly change with $\sqrt{s}$
We used CSMWZ set of LDME
(A) Comparing $\left|A^{\cos 2 \phi_{t}}\right|$ calculated in SM, GP and TMD evolution with the upper bound on the asymmetry.
(B) Contribution to $\left|A^{\cos 2 \phi_{t}}\right|$ from all the color singlet and color octet states for two sets of LDMEs, CMSWZ (left) and SV (right).




(B)
$\mathbf{K}_{\mathbf{t}}(\mathrm{GeV})$
(A)

## AMPLITUDE CALCULATIONS USING NRQCD

$$
>e(l)+p(P) \rightarrow e\left(l^{\prime}\right)+J / \psi\left(P_{\psi}\right)+\gamma\left(p_{\gamma}\right)+X
$$

The amplitude can be written as

$$
\begin{aligned}
& M\left(\gamma^{*} g \rightarrow Q \bar{Q}\left[{ }^{2 S+1} L_{J}^{(1,8)}\right]\left(P_{\psi}\right)+\gamma\left(p_{\gamma}\right)\right) \\
& =\sum_{L_{z} S_{z}} \int \frac{d^{3} k}{(2 \pi)^{3}} \Psi_{L L_{z}}(k)\left\langle L L_{z} ; S S_{z} \mid J J_{z}\right\rangle \operatorname{Tr}\left[\mathcal{O}\left(q, p, P_{\psi}, k\right) \mathcal{P}_{S S_{z}}\left(P_{\psi}, k\right)\right]
\end{aligned}
$$

Contribution: ${ }^{3} S_{1}^{(8)}$

## UNPOLARIZED CROSS SECTION: $j \psi-\gamma$ PRODUCTION



$Z<0.9$ : avoid contribution from diffractive process and prevents hitting ultraviolet divergences.
$0.3<Z$ : avoid contribution via resolved-photon channel

A sizable cross section, expected to be detected at upcoming EIC.
Its measurement can provide a clean probe CO mechanism within NRQCD framework.
Provide clean extraction of a CO LDME

## ASYMMETRY AT EIC: $J / \psi-\gamma$ PRODUCTION



Model independent Upper bounds on the asymmetries:

$$
\left|A^{\cos 2 \phi_{T}}\right| \leq 2 \frac{\left|\mathcal{B}_{0}\right|}{\mathcal{A}_{0}}, \quad\left|A^{\cos 2\left(\phi_{T}-\phi_{\perp}\right)}\right| \leq 2 \frac{\left|\mathcal{B}_{2}\right|}{\mathcal{A}_{0}}
$$

Asymmetries are independent of center of mass energy.
Asymmetries are independent of LDMEs.
D. Chakrabarti,RK,A. Mukherjee,R.Sangem,PRD.107.014008

## ASYMMETRY AT EIC: $J / \psi-\gamma$ PRODUCTION



Upper bounds on the Sivers asymmetry is 1 .
$q_{T}$ dependent of Sivers asymmetry is obtained using Gaussian parameterization. Asymmetry depends on center of mass energy. Asymmetry hardly depends on virtuality.

## CONCLUSSION

We calculated the azimuthal asymmetry in $J / \psi-j e t$ and $J / \psi-\gamma$ electroproductions where the pair produced in a almost back-to-back in the transverse plane.

We used NRQCD framework for $J / \psi$ production.
$A^{\cos \left(2 \phi_{T}\right)}$ and $A^{\cos 2\left(\phi_{T}-\phi_{\perp}\right)}$ azimuthal asymmetries probes the linearly polarized gluon TMD, where as the $A^{\sin \left(\phi_{S}-\phi_{T}\right)}$ can probe gluon Sivers function.

We show the numerical estimates of the asymmetries in a model dependent parameterizations of the TMDs and model independent upper bounds on these asymmetries using the positivity bounds on TMDs. We found a sizable azimuthal asymmetries both in $J / \psi-j e t$ and $J / \psi-\gamma$ productions.

Back-to-back $J / \psi-j e t$ and $J / \psi-\gamma$ electroproduction could be a promising channel to probe poorly known gluon TMDs at the future proposed EIC.

