

AZIMUTHAL ASYMMETRY IN J/ψ PRODUCTION IN ELECTRON-PROTON COLLISION AT EIC

The 3-D nucleon structure in momentum space is still not known yet!

Parton intrinsic transverse momentum?

Spin and k_{\perp} correlations?

Angular momentum of partons?

Spatial distribution?

Raj Kishore[†]

[†]Ruder Boskovic Institute, Zagreb

ACHT-2023 Workshop 27-29 September, Leibnitz

PLAN OF TALK

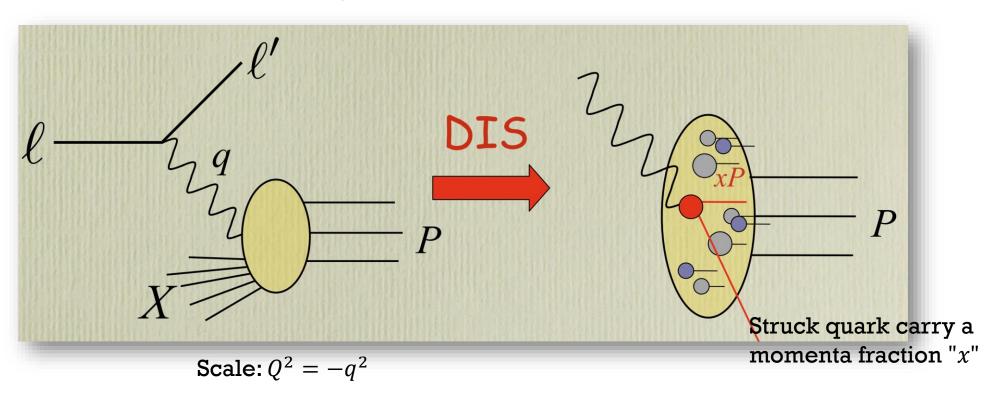
Parton Distribution function: PDFs, TMDs (Gluon TMDs)

Azimuthal asymmetries in $J/\psi - jet$ and $J/\psi - \gamma$ pair production in ep scattering at EIC

Numerical estimates

Conclusion

DIS process: usual way of exploring the proton structure



Naïve parton model:
$$d\sigma^{lp \to l' X} = \sum_q f_q(x) \otimes d\sigma^{lq \to l' q}$$

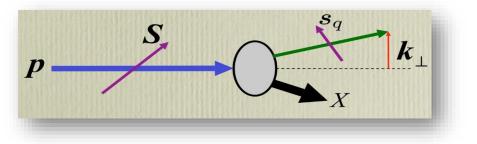
Within the Parton model of nucleons we defined parton distribution functions (PDFs).

> Collinear parton distribution functions, $f_a(x, Q^2)$, gives the number density of partons with momentum fraction x and that depends on scale Q^2 , gives the 1-D picture of a nucleon.

Transverse momentum-dependent distribution and fragmentation functions

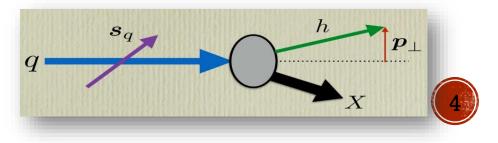
- Introducing a new concept: Transverse momentum dependent, distribution functions (TMD-PDFs) and fragmentation functions (TMD-FFs).
- □ TMD-PDFs (Transverse Momentum Dependent Parton Distribution Functions): $f(x, k_{\perp}, Q^2)$ gives the number density of partons, with their intrinsic transverse motion and spin, inside a nucleon.

 $oldsymbol{S} ullet (p imes k_{ot}):$ Sivers effect $oldsymbol{s}_{q} ullet (p imes k_{ot}):$ Boer-Mulders effect

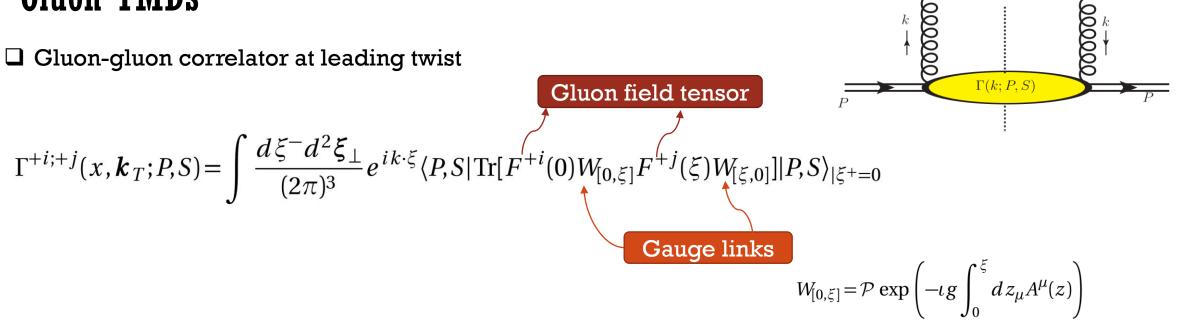


□ TMD-FFs (Transverse Momentum Dependent Fragmentation Functions): $D(z, p_{\perp})$ gives the number density of hadrons, with their momentum, originated in the fragmentation of a parton.

 $\boldsymbol{s}_{\mathrm{q}} \boldsymbol{\cdot} (\boldsymbol{p}_{\mathrm{q}} imes \boldsymbol{p}_{\perp}) : \text{ Collins effect}$

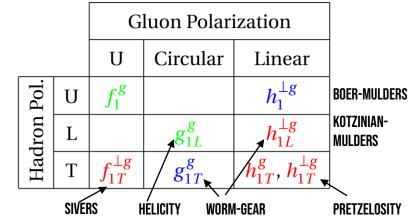


Gluon TMDs



Parameterizations: for the unpolarized (U) and transversely polarized (T) target

$$\Gamma_{U}^{ij}(x, \boldsymbol{k}_{T}^{2}) = \frac{x}{2} \left\{ -g_{T}^{ij} f_{1}^{g}(x, \boldsymbol{k}_{T}^{2}) + \left(\frac{k_{T}^{i} k_{T}^{j}}{M_{P}^{2}} + g_{T}^{ij} \frac{\boldsymbol{k}_{T}^{2}}{2M_{P}^{2}} \right) h_{1}^{\perp g}(x, \boldsymbol{k}_{T}^{2}) \right\}$$
$$\Gamma_{T}^{ij}(x, \boldsymbol{k}_{T}^{2}) = \frac{x}{2} \left\{ -g_{T}^{ij} \frac{\epsilon_{T}^{\rho\sigma} k_{T\rho} S_{T\sigma}}{M_{P}} f_{1T}^{\perp g}(x, \boldsymbol{k}_{T}^{2}) + \dots \right\}$$



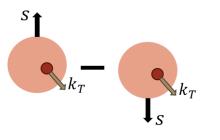
GLUON TMDS: (BOER-MULDERS) $h_1^{\perp g}(x, k_T^2)$ AND (GSF) $\Delta^N f_{g/P^{\uparrow}}(x, k_T^2)$

 Gluon Boer-Mulders function is associated with a symmetric tensor structure

$$\frac{1}{2} \left(\frac{2k_T^i k_T^j}{k_T^2} - \delta^{ij} \right) = \frac{1}{2} \left(\begin{array}{cc} \cos 2\phi & \sin 2\phi \\ \sin 2\phi & -\cos 2\phi \end{array} \right)$$

- > Interpret $h_1^{\perp g}(x, k_T^2)$ as "azimuthal correlated" gluon distribution function.
- > It affects the unpolarized cross section and cause **azimuthal asymmetries**: $\langle \cos(2\phi) \rangle, \langle \cos(4\phi) \rangle$

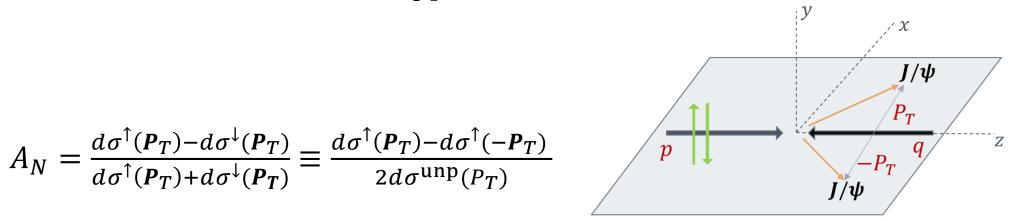
- SSF describes the number density of unpolarized gluon inside a transversely polarized nucleon.
 - $\Delta^{N} f_{g/P^{\uparrow}}(x, \boldsymbol{k}_{T}) = \widehat{f}_{g}(x, \boldsymbol{k}_{T}; \boldsymbol{S}_{T}) \widehat{f}_{g}(x, \boldsymbol{k}_{T}; -\boldsymbol{S}_{T}) \equiv \Delta^{N} f_{g}(x, \boldsymbol{k}_{T}) \left(\widehat{\boldsymbol{P}} \times \widehat{\boldsymbol{k}}_{T}\right) \cdot \widehat{\boldsymbol{S}}_{T}$



SINGLE SPIN ASYMMETRY (SSA) AND AZIMUTHAL ASYMMETRY

The TMDs can be studied in Drell-Yan (DY) $(pp \rightarrow ll')$, semi-inclusive deep inelastic scattering (SIDIS) $(ep \rightarrow e'hX)$ and electron-positron $(e^+e^- \rightarrow h)$ annihilation processes.

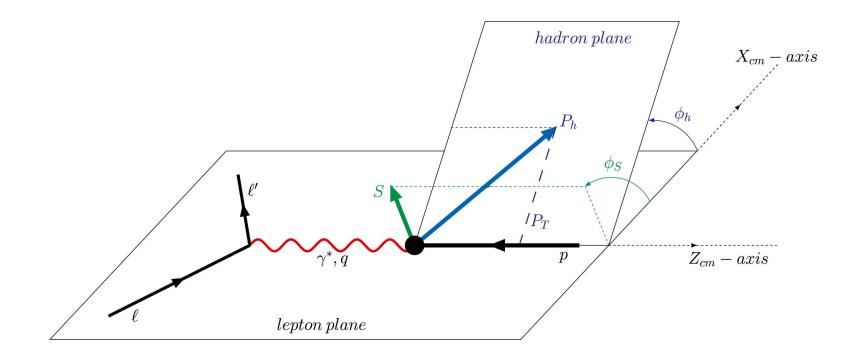
➤ Transverse SSA in a hadronic scattering process: $A + B^{\uparrow} \rightarrow C + X$



> Azimuthal asymmetry:
$$\langle \cos(2\phi_h) \rangle = \frac{\int d\phi_h \cos(2\phi_h) d\sigma}{\int d\phi_h d\sigma}$$

J/ψ production in ep scattering

≻ Consider the electroproduction processes: $e(l) + p(P) \rightarrow e(l') + J/\psi(P_{\psi}) + X$

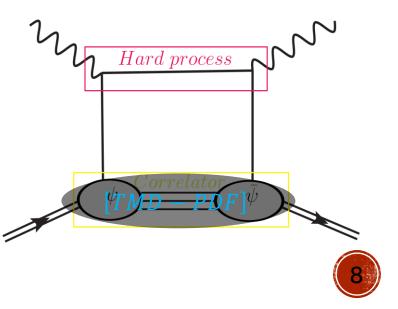


 $\gamma^* - p$ c.m. frame

 $d\sigma \propto [TMD - PDF] \otimes d\hat{\sigma} \otimes [Hadronization]$

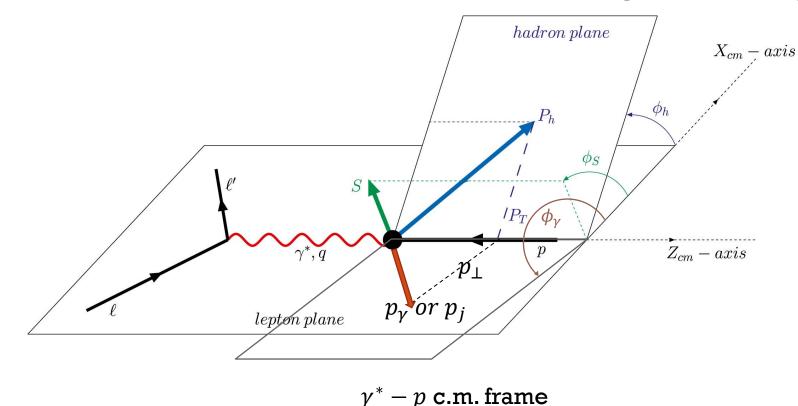
$$z\left(=\frac{P\cdot P\psi}{P\cdot q}\right)=1$$
 (LO)

z is fraction of virtual photon energy carried by J/ψ in proton rest frame.



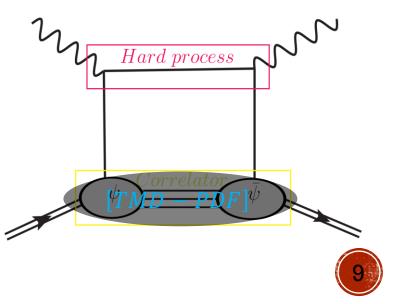
A BACK-TO-BACK $J/\psi - jet$ and $J/\psi - \gamma$ production in ep scattering

► Consider the electroproduction processes: $e(l) + p(P) \rightarrow e(l') + J/\psi(P_{\psi}) + \gamma(p_{\gamma}) + X$ $e(l) + p(P) \rightarrow e(l') + J/\psi(P_{\psi}) + jet(p_i) + X$



 $z\left(=\frac{P\cdot P_{\psi}}{P\cdot q}\right) < 1$ (LO)

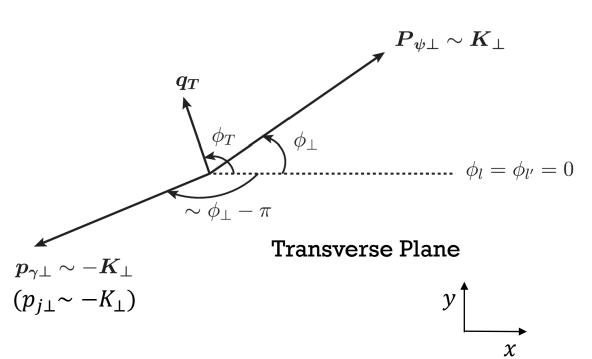
z is fraction of virtual photon energy carried by J/ψ in proton rest frame.



 $d\sigma \propto [TMD - PDF] \otimes d\hat{\sigma} \otimes [Hadronization]$

A BACK-TO-BACK $J/\psi - jet$ and $J/\psi - \gamma$ production in ep scattering

- > Assume TMD factorization.
- > $p \gamma^*$ center of mass frame which move along z direction
- > $P_{\psi\perp}$ and $P_{j\perp}$ are transverse momentum of J/ψ and *jet* respectively in the plane orthogonal to the proton momentum.



> We define sum and difference of transverse momenta

$$q_T = P_{\psi \perp} + P_{j \perp}$$
, $K_{\perp} = \frac{P_{\psi \perp} - P_{j \perp}}{2}$ ϕ_T denotes azimuthal angle of q_T

> In the case where $|q_T| \ll |K_{\perp}|$, the J/ψ and jet are almost back-to-back in the transverse plane.

TMD Factorization

CROSS SECTION:
$$ep \rightarrow e + J/\psi + jet + X$$

$$d\sigma = \frac{1}{2s} \frac{d^{3}l'}{(2\pi)^{3}2E_{l'}} \frac{d^{3}P_{\psi}}{(2\pi)^{3}2E_{\psi}} \frac{d^{3}P_{j}}{(2\pi)^{3}2E_{j}} \int dx d^{2}p_{T} (2\pi)^{4} \delta^{4} (q + p_{g} - P_{\psi} - P_{j}) \times \frac{1}{Q^{4}} L^{\mu\mu'} (l, q) \Phi_{g}^{\nu\nu'} (x, p_{T}^{2}) M_{\mu\nu}^{g\gamma^{*} \to J/\psi g} M_{\mu'\nu'}^{*g\gamma^{*} \to J/\psi g}$$

Lepton tensor:
$$L^{\mu\mu'}(l,q) = e^2(-g^{\mu\mu'}Q^2 + 2(l^{\mu}l'^{\mu'} + l^{\mu'}l^{\mu}))$$

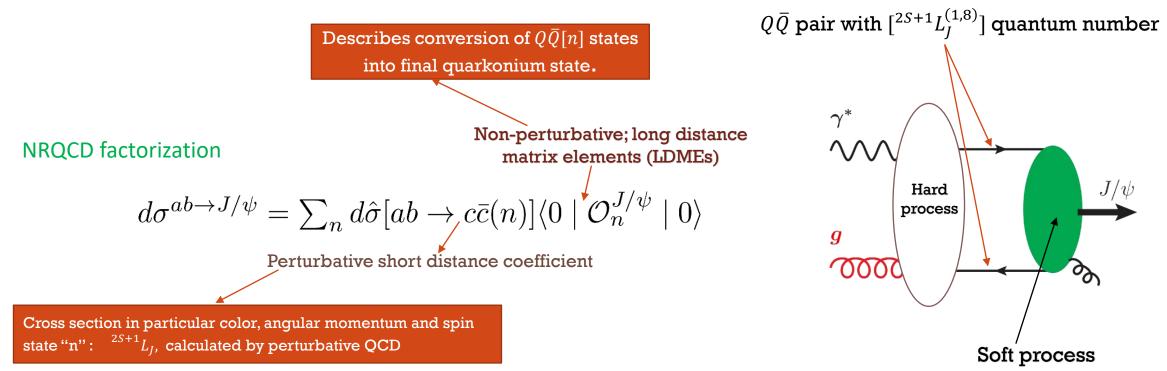
Parameterization of gluon correlator for **unpolarized proton** target at 'Leading Twist'

$$\Phi_{g}^{\nu\nu'}(x, \boldsymbol{p}_{T}^{2}) = \frac{1}{2x} \left[-g_{\perp}^{\nu\nu'} f_{1}^{g}(x, \boldsymbol{p}_{T}^{2}) + \left(\frac{p_{T}^{\nu} p_{T}^{\nu'}}{M_{p}^{2}} + g_{\perp}^{\nu\nu'} \frac{\boldsymbol{p}_{T}^{2}}{2M_{p}^{2}} \right) h_{1}^{\perp g}(x, \boldsymbol{p}_{T}^{2}) \right]$$

Unpolarized gluon distribution
Linearly polarized gluon distribution

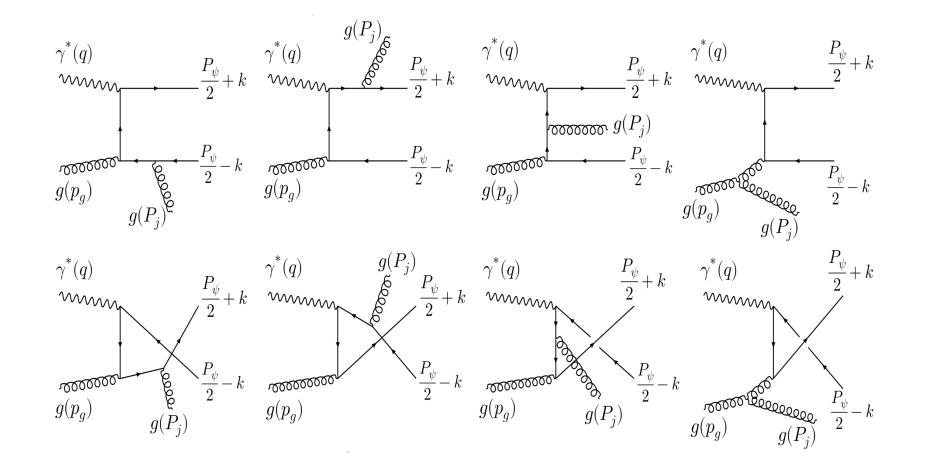
QUARKONIUM PRODUCTION

> Quarkonium is a bound state of heavy quark and anti-quark ($Q\bar{Q}$)



FEYNMAN DIAGRAMS

Gluon initiated hard process: $\gamma^* g \to Q\bar{Q} g$, contributes significantly over the quark(anti-quark) initiated hard process: $\gamma^* q(\bar{q}) \to Q\bar{Q} q(\bar{q})$, in the small-x domain.



Tree level Feynman diagrams for the hard process: $\gamma^* + g \rightarrow c + \bar{c} + g$

AMPLITUDE CALCULATIONS USING NRQCD

The amplitude can be written as

$$M(\gamma^* g \to Q\bar{Q}[^{2S+1}L_J^{(1,8)}](P_{\psi}) + g(P_j))$$

= $\sum_{L_Z S_Z} \int \frac{d^3k}{(2\pi)^3} \Psi_{LL_Z}(k) \langle LL_Z; SS_Z | JJ_Z \rangle \operatorname{Tr}[\mathcal{O}(q, p, P_{\psi}, k) \mathcal{P}_{SS_Z}(P_{\psi}, k)]$
D. Boer and C. Pisano (2012)

 $\mathcal{O}(q, p, P_{\psi}, k)$: amplitude for production of $Q\bar{Q}$ pair.

$$\mathcal{O}(q, p, P_{\psi}, k) = \sum_{m=1}^{8} C_m \mathcal{O}_m(q, p, P_{\psi}, k)$$

The spin projection operator, $\mathcal{P}_{SS_z}(P_{\psi}, k)$, projects the spin triplet and spin singlet states of $Q\bar{Q}$ pair

$$\mathcal{P}_{SS_{z}}(P_{\psi},k) = \sum_{s_{1}s_{2}} \left\langle \frac{1}{2}s_{1}; \frac{1}{2}s_{2} \middle| SS_{z} \right\rangle v \left(\frac{P_{\psi}}{2} - k, s_{1} \right) \bar{u} \left(\frac{P_{\psi}}{2} + k, s_{2} \right) \qquad \Pi_{SS_{z}} = \gamma^{5} \text{ for spin singlet } (S = 0)$$

$$= \frac{1}{4M_{\psi}^{3/2}} \left(-\not\!\!\!\!/\psi + 2\not\!\!\!/k + M_{\psi} \right) \Pi_{SS_{z}} \left(\not\!\!\!/\psi + 2\not\!\!\!/k + M_{\psi} \right) + O(k^{2}) \qquad \Pi_{SS_{z}} = \epsilon_{S_{z}}^{\mu} \left(P_{\psi} \right) \gamma_{\mu} \text{ for spin triplet } (S = 1)$$

Amplitude Calculations

Since, $k \ll P_h$, amplitude expanded in Taylor series about k = 0

First term in the expansion gives the S-states (L = 0, J = 0, 1). The linear term in k gives the P-states (L = 1, J = 0, 1, 2).

The S-states amplitude :
$$M[^{2S+1}S_J^{(1,8)}](P_{\psi},k) = \frac{1}{\sqrt{4\pi}}R_0(0)\operatorname{Tr}[\mathcal{O}(q,p,P_{\psi},k)\mathcal{P}_{SS_z}(P_{\psi},k)\Big|_{k=0}$$

The P-states amplitude :

$$M[^{2S+1}P_{J}^{(1,8)}](P_{\psi},k) = -i\sqrt{\frac{3}{4\pi}}R_{1}^{\prime}(0)\sum_{L}\epsilon_{L_{z}}^{\alpha}(P_{\psi})\langle LL_{z};SS_{z}|JJ_{z}\rangle\mathrm{Tr}[\mathcal{O}_{\alpha}(0)\mathcal{P}_{SS_{z}}(0) + \mathcal{O}(0)\mathcal{P}_{SS_{z}\alpha}(0)]$$
$$\mathcal{O}_{\alpha}(0) = \frac{\partial}{\partial k^{\alpha}}\mathcal{O}(q,p,P_{\psi},k)\Big|_{k=0} \qquad \mathcal{P}_{SS_{z}\alpha}(0) = \frac{\partial}{\partial k^{\alpha}}\mathcal{P}_{SS_{z}}(q,p,P_{\psi},k)\Big|_{k=0}$$

Contribution: ${}^{3}S_{1}^{(1)}$, ${}^{3}S_{1}^{(8)}$, ${}^{1}S_{0}^{(8)}$, ${}^{3}P_{j(=0,1,2)}^{(8)}$

 R_0 and R'_1 are related with the LDMEs

FINAL CROSS SECTION: $ep \rightarrow e + J/\psi + jet + X \text{ OR } ep \rightarrow e + J/\psi + \gamma + X$

$$\begin{aligned} \frac{d\sigma}{dzdydx_{B}d^{2}q_{T}d^{2}K_{\perp}} &\equiv d\sigma(\phi_{S},\phi_{T},\phi_{\perp}) = d\sigma^{U}(\phi_{T},\phi_{\perp}) + d\sigma^{T}(\phi_{S},\phi_{T},\phi_{\perp}) \\ d\sigma^{U} &= \mathcal{N} \bigg[(\mathcal{A}_{0} + \mathcal{A}_{1}\cos\phi_{\perp} + \mathcal{A}_{2}\cos2\phi_{\perp})f_{1}^{g}(x,q_{T}^{2}) + (\mathcal{B}_{0}\cos2\phi_{T} + \mathcal{B}_{1}\cos(2\phi_{T} - \phi_{\perp})) \\ &+ \mathcal{B}_{2}\cos2(\phi_{T} - \phi_{\perp}) + \mathcal{B}_{3}\cos(2\phi_{T} - 3\phi_{\perp}) + \mathcal{B}_{4}\cos(2\phi_{T} - 4\phi_{\perp}))\frac{q_{T}^{2}}{M_{p}^{2}} h_{1}^{\perp g}(x,q_{T}^{2}) \bigg] \\ d\sigma^{T} &= \mathcal{N}|S_{T}| \bigg[\sin(\phi_{S} - \phi_{T})(\mathcal{A}_{0} + \mathcal{A}_{1}\cos\phi_{\perp} + \mathcal{A}_{2}\cos2\phi_{\perp}) \frac{|q_{T}|}{M_{p}} f_{1T}^{\perp g}(x,q_{T}^{2}) \\ &+ \cos(\phi_{S} - \phi_{T})(\mathcal{B}_{0}\sin2\phi_{T} + \mathcal{B}_{1}\sin(2\phi_{T} - \phi_{\perp}) + \mathcal{B}_{2}\sin2(\phi_{T} - \phi_{\perp}) \\ &+ \mathcal{B}_{3}\sin(2\phi_{T} - 3\phi_{\perp}) + \mathcal{B}_{4}\sin(2\phi_{T} - 4\phi_{\perp})) \frac{|q_{T}|^{3}}{M_{p}^{3}} h_{1T}^{\perp g}(x,q_{T}^{2}) \\ &+ (\mathcal{B}_{0}\sin(\phi_{S} + \phi_{T}) + \mathcal{B}_{1}\sin(\phi_{S} + \phi_{T} - \phi_{\perp}) + \mathcal{B}_{2}\sin(\phi_{S} + \phi_{T} - 2\phi_{\perp}) \\ &+ \mathcal{B}_{3}\sin(\phi_{S} + \phi_{T} - 3\phi_{\perp}) + \mathcal{B}_{4}\sin(\phi_{S} + \phi_{T} - 4\phi_{\perp})) \frac{|q_{T}|}{M_{p}} h_{1T}^{q}(x,q_{T}^{2}) \bigg], \end{aligned}$$

Coefficients: $A_i \sim A_i^{\gamma g \to c \bar{c}[n]g} \langle 0 | O_n^{J/\psi} | 0 \rangle$ and $B_i \sim B_i^{\gamma g \to c \bar{c}[n]g} \langle 0 | O_n^{J/\psi} | 0 \rangle$ comes from partonic processes.

ASYMMETRY CALCULATIONS

Weighted azimuthal asymmetry:

$$A^{W(\phi_S,\phi_T)} \equiv 2 \frac{\int d\phi_S d\phi_T d\phi_\perp W(\phi_S,\phi_T) d\sigma(\phi_S,\phi_T,\phi_\perp)}{\int d\phi_S d\phi_T d\phi_\perp d\sigma(\phi_S,\phi_T,\phi_\perp)}$$

U. D'Alesio (2019)

Azimuthal modulations probe Boer-Mulder gluon TMD:

$$A^{\cos 2\phi_T} = \frac{q_T^2}{M_p^2} \frac{\mathcal{B}_0}{\mathcal{A}_0} \frac{h_1^{\perp g}(x, q_T^2)}{f_1^g(x, q_T^2)} \qquad A^{\cos 2(\phi_T - \phi_\perp)} = \frac{q_T^2}{M_p^2} \frac{\mathcal{B}_2}{\mathcal{A}_0} \frac{h_1^{\perp g}(x, q_T^2)}{f_1^g(x, q_T^2)}$$

Azimuthal modulations which can be exploited to extract polarized TMDs $f_{1T}^{\perp g}$, h_1^g and $h_{1T}^{\perp g}$

$$A^{\sin(\phi_{S}-\phi_{T})} = \frac{|\boldsymbol{q}_{T}| \int_{1T}^{\perp g} (x, \boldsymbol{q}_{T}^{2})}{M_{p} \int_{1}^{g} (x, \boldsymbol{q}_{T}^{2})}$$

$$A^{\sin(\phi_{S}-3\phi_{T})} = -\frac{|\boldsymbol{q}_{T}|^{3}}{2M_{p}^{3}} \frac{\mathcal{B}_{0}}{\mathcal{A}_{0}} \frac{h_{1T}^{\perp g} (x, \boldsymbol{q}_{T}^{2})}{f_{1}^{g} (x, \boldsymbol{q}_{T}^{2})} \qquad A^{\sin(\phi_{S}+\phi_{T})} = \frac{|\boldsymbol{q}_{T}|}{M_{p}} \frac{\mathcal{B}_{0}}{\mathcal{A}_{0}} \frac{h_{1}^{g} (x, \boldsymbol{q}_{T}^{2})}{f_{1}^{g} (x, \boldsymbol{q}_{T}^{2})}$$

GAUSSIAN PARAMETERIZATION (GP)

 $f_1^g(x, q_T^2)$ and $h_1^{\perp g}(x, q_T^2)$ are assumed to be factorized as function of x, i.e. collinear PDFs and a Gaussian function of the transverse momentum q_T .

$$f_{1}^{g}(x, \boldsymbol{q}_{T}^{2}) = f_{1}^{g}(x, \mu) \frac{1}{\pi \langle q_{T}^{2} \rangle^{2}} e^{-\frac{q_{T}^{2}}{\langle q_{T}^{2} \rangle}}$$
$$h_{1}^{\perp g}(x, \boldsymbol{q}_{T}^{2}) = \frac{M_{P}^{2} f_{1}^{g}(x, \mu)}{\pi \langle q_{T}^{2} \rangle^{2}} \frac{2(1-r)}{r} e^{1-\frac{q_{T}^{2}}{r \langle q_{T}^{2} \rangle}}$$

r (0 < r < 1) and $\langle q_T^2 \rangle$ are parameters We took, r = 1/3 and $\langle q_T^2 \rangle = 0.25$

Gluon TMDs satisfy positivity bounds:

$$\frac{\boldsymbol{q}_T^2}{2M_P} \left| h_1^{\perp g} \left(x, \boldsymbol{q}_T^2 \right) \right| \le f_1^g \left(x, \boldsymbol{q}_T^2 \right)$$
$$\frac{|\boldsymbol{q}_T|}{M_P} \left| f_{1T}^{\perp g} \left(x, \boldsymbol{q}_T^2 \right) \right| \le f_1^g \left(x, \boldsymbol{q}_T^2 \right)$$

$$\begin{split} \Delta^{N} f_{g/p^{\uparrow}}(x,q_{T}) &= \left(-\frac{2|\boldsymbol{q}_{T}|}{M_{P}}\right) f_{1T}^{\perp g}(x,q_{T}) \\ &= 2 \frac{\sqrt{2e}}{\pi} \mathcal{N}_{g}(x) f_{g/p}(x) \sqrt{\frac{1-\rho}{\rho}} q_{T} \frac{e^{-\boldsymbol{q}_{T}^{2}/\rho \langle q_{T}^{2} \rangle}}{\langle q_{T}^{2} \rangle^{3/2}} \\ \mathcal{N}_{g}(x) &= N_{g} x^{\alpha} (1-x)^{\beta} \frac{(\alpha+\beta)^{(\alpha+\beta)}}{\alpha^{\alpha} \beta^{\beta}} \\ N_{g} &= 0.25, \quad \alpha = 0.6, \quad \beta = 0.6, \quad \rho = 0.1 \end{split}$$

U. D'Alesio (2019)

D. Boer and C. Pisano (2012)

PARAMETERIZATION: SPECTATOR MODEL (SM)

Nucleon is assumed to emit a gluon and the remaining is treated as a single on-shell particle called spectator particle.

Mass of the spectator particle is allowed to take a continuous values described by a spectral function, $\rho_X(M_X)$

where, A, B, C, D, a, b, σ are free parameters

 $\begin{bmatrix} \Lambda & C & (M_{\rm V}-D)^2 \end{bmatrix}$

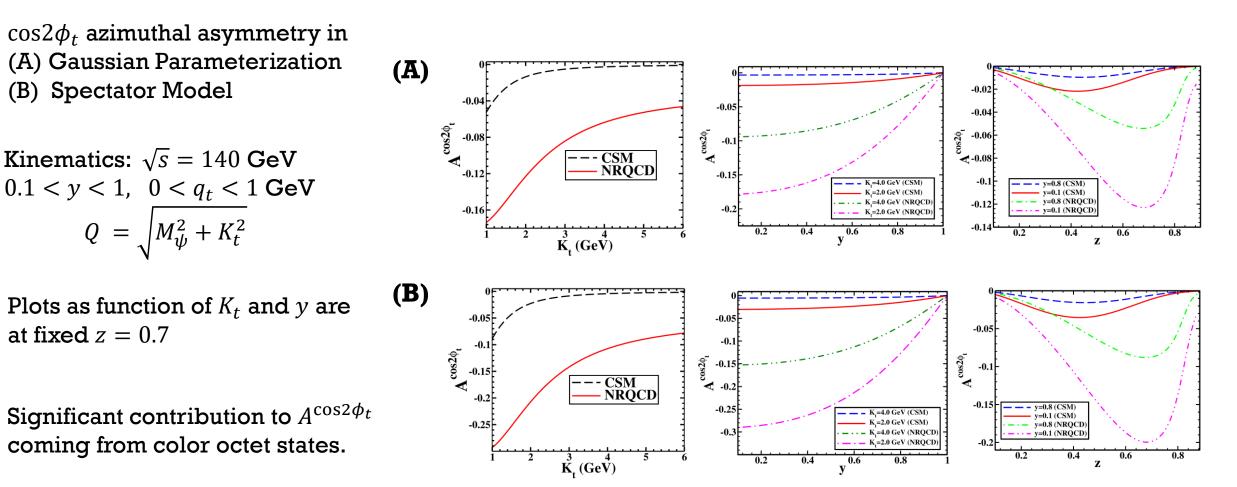
At leading-twist, T-even unpolarized and linearly polarized gluon TMDs can be written as $\hat{f}_{1}^{g}(x, \boldsymbol{q}_{t}^{2}; M_{X}) = \left[(2Mxg_{1} - x(M + M_{X})g_{2})^{2} \left[(M_{X} - M(1 - x))^{2} + \boldsymbol{q}_{t}^{2} \right] + 2\boldsymbol{q}_{t}^{2} (\boldsymbol{q}_{t}^{2} + xM_{X}^{2})g_{2}^{2} + 2\boldsymbol{q}_{t}^{2}M^{2}(1 - x)(4g_{1}^{2} - xg_{2}^{2}) \right] \times \left[(2\pi)^{3}4xM^{2} (L_{X}^{2}(0) + \boldsymbol{q}_{t}^{2})^{2} \right]^{-1}$

$$\hat{h}_1^{\perp g}(x, \boldsymbol{q}_t^2; M_X) = \left[4M^2(1-x)g_1^2 + \left(L_X^2(0) + \boldsymbol{q}_t^2\right)g_2^2\right] \times \left[(2\pi)^3 x \left(L_X^2(0) + \boldsymbol{q}_t^2\right)^2\right]^{-1}$$

Where $g_{1,2}(p^2)$ are model-dependent form factors, given as: $g_{1,2}(p^2) = \kappa_{1,2} \frac{p^2(1-x)^2}{(q_t^2 + L_X^2(\Lambda_X^2))^2}$

 p^2 is gluon momentum, $\kappa_{1,2}$ and Λ_X are normalization and cut-off parameters respectively, and $L_X^2(\Lambda_X^2) = xM_X^2 + (1-x)\Lambda_X^2 - x(1-x)M^2$

RESULTS: $J/\psi - jet$ **PRODUCTION**



Asymmetry hardly change with \sqrt{s}

We used CSMWZ set of LDME

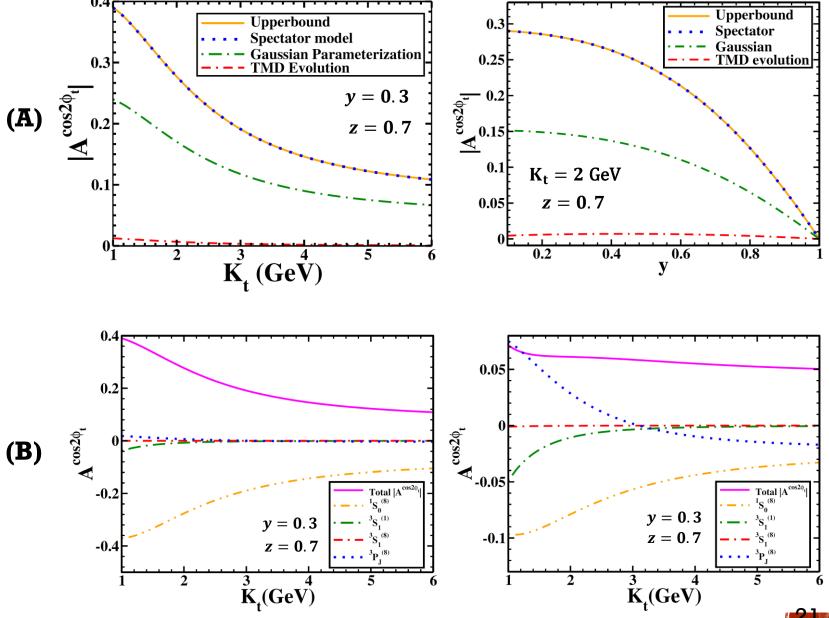
Chao (2012)

RESULTS: $J/\psi - jet$ **PRODUCTION**

PRD 106.034009

(A) Comparing $|A^{\cos 2\phi_t}|$ calculated in SM, GP and TMD evolution with the upper bound on the asymmetry.

(B) Contribution to $|A^{\cos 2\phi_t}|$ from all the color singlet and color octet states for two sets of LDMEs, CMSWZ (left) and SV (right).



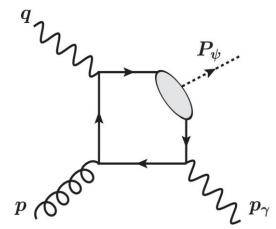
Sharma (2013)

Chao (2012)

AMPLITUDE CALCULATIONS USING NRQCD

$$\succ e(l) + p(P) \rightarrow e(l') + J/\psi(P_{\psi}) + \gamma(p_{\gamma}) + X$$

The amplitude can be written as

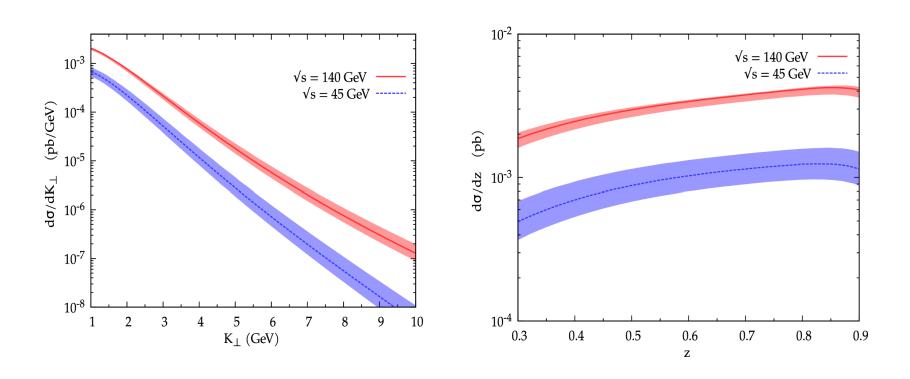


$$M(\gamma^* g \to Q\bar{Q}[^{2S+1}L_J^{(1,8)}](P_{\psi}) + \gamma(p_{\gamma}))$$

$$= \sum_{L_Z S_Z} \int \frac{d^3k}{(2\pi)^3} \Psi_{LL_Z}(k) \langle LL_Z; SS_Z | JJ_Z \rangle \operatorname{Tr}[\mathcal{O}(q, p, P_{\psi}, k) \mathcal{P}_{SS_Z}(P_{\psi}, k)]$$
D. Boer and C. Pisano (2012)

Contribution: ${}^{3}S_{1}^{(8)}$

UNPOLARIZED CROSS SECTION: $J\psi - \gamma$ PRODUCTION



Z < 0.9: avoid contribution from diffractive process and prevents hitting ultraviolet divergences.

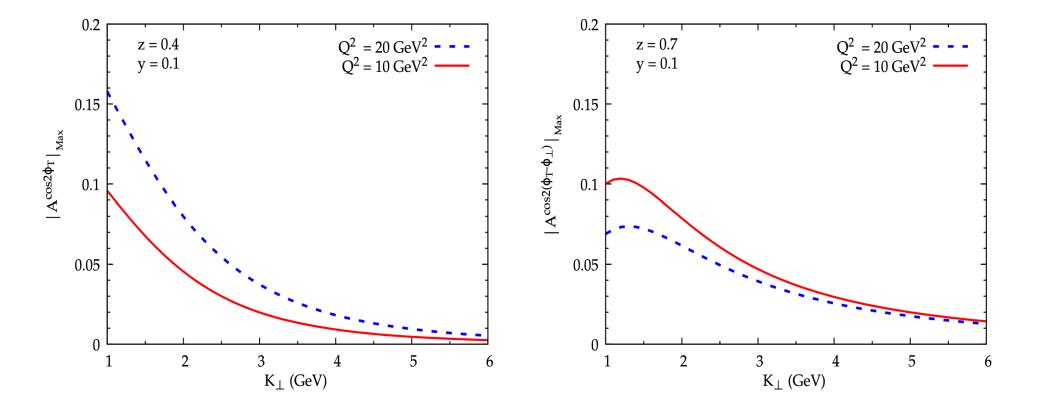
0.3 < Z: avoid contribution via resolved-photon channel

A sizable cross section, expected to be detected at upcoming EIC.

Its measurement can provide a clean probe CO mechanism within NRQCD framework.

Provide clean extraction of a CO LDME

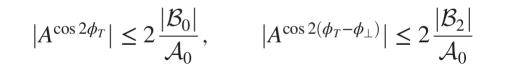
ASYMMETRY AT EIC: $J/\psi - \gamma$ production



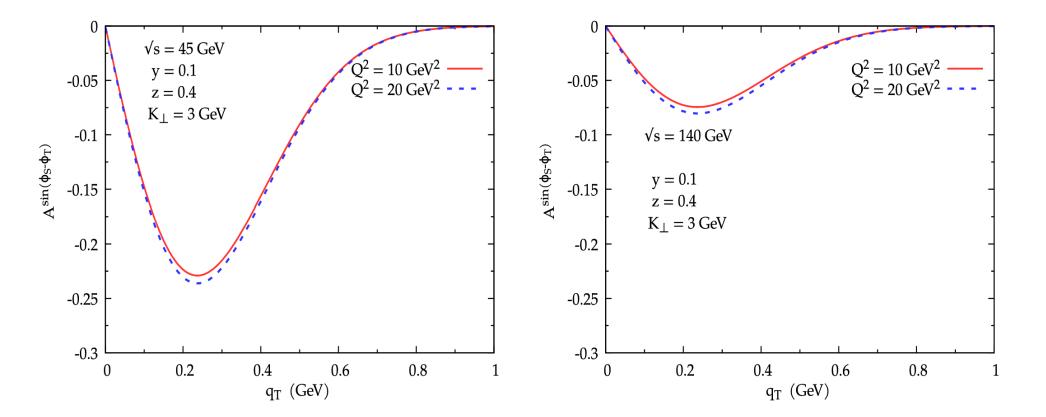
Model independent Upper bounds on the asymmetries:

Asymmetries are independent of center of mass energy.

Asymmetries are independent of LDMEs.



ASYMMETRY AT EIC: $J/\psi - \gamma$ PRODUCTION



Upper bounds on the Sivers asymmetry is 1.

 q_T dependent of Sivers asymmetry is obtained using Gaussian parameterization. Asymmetry depends on center of mass energy. Asymmetry hardly depends on virtuality.

CONCLUSION

We calculated the azimuthal asymmetry in $J/\psi - jet$ and $J/\psi - \gamma$ electroproductions where the pair produced in a almost back-to-back in the transverse plane.

We used NRQCD framework for J/ψ production.

 $A^{\cos(2\phi_T)}$ and $A^{\cos 2(\phi_T - \phi_\perp)}$ azimuthal asymmetries probes the linearly polarized gluon TMD, where as the $A^{\sin(\phi_S - \phi_T)}$ can probe gluon Sivers function.

We show the numerical estimates of the asymmetries in a model dependent parameterizations of the TMDs and model independent upper bounds on these asymmetries using the positivity bounds on TMDs. We found a sizable azimuthal asymmetries both in $J/\psi - jet$ and $J/\psi - \gamma$ productions.

Back-to-back $J/\psi - jet$ and $J/\psi - \gamma$ electroproduction could be a promising channel to probe poorly known gluon TMDs at the future proposed EIC.

