ACHT 2023: Non-Perturbative Aspects of Nuclear, Particle and Astroparticle Physics

Gluonic bound states from bound state equations

Markus Q. Huber

Institute of Theoretical Physics
Giessen University

In collaboration with:
Christian S. Fischer Hèlios Sanchis-Alepuz

Eur.Phys.J.C 80, arXiv:2004.00415 $\rightarrow \mathrm{J}=0$
Eur.Phys.J.C 80, arXiv:2110.09180 $\rightarrow \mathrm{J}=0,2,3,4$
vConf21, arXiv:2111.10197 \rightarrow +higher terms
HADRON2021, arXiv:2201.05163 \rightarrow +higher terms

Glueballs

Non-Abelian nature of QCD \rightarrow self-interaction of force fields.

Mass dynamically created from massless (due to gauge invariance) gluons.

Theory:
Glueballs from gauge inv. operators, e.g., $F_{\mu \nu} F^{\mu \nu}$.
\rightarrow Mixing of operators with equal quantum numbers.
Experiment:
Production in glue-rich environments, e.g., $p \bar{p}$ annihilation (PANDA), pomeron exchange in $p p$ (central exclusive production), radiative J / ψ decays

Reviews on glueballs: [Klempt, Zaitsev, Phys.Rept. 454 (2007); Mathieu, Kochelev, Vento, Int.J.Mod.Phys. 18 (2009); Crede, Meyer,
Prog.Part.Nucl.Phys. 63 (2009); Ochs, J.Phys.G40 (2013); Llanes-Estrada, EPJST 230 (2021); Vadacchino, 2305.04869]

Scalar sector

Classification not always easy, e.g., scalar sector $J^{P C}=0^{++}$:

- $q \bar{q}$ mesons, tetraquarks: (inverted) mass hierarchy?

- Glueballs?

glueball candidates

Scalar glueballs from J / ψ decay

Coupled-channel analyses of exp. data (BESIII):
[Sarantsev, Denisenko, Thoma, Klempt, Phys. Lett. B 816 (2021)] [JPAC Coll., Rodas et al., Eur.Phys.J.C 82 (2022)]

Glueball studies

- Reviews on glueballs: [Klempt, Zaitsev, Phys.Rept. 454 (2007); Mathieu, Kochelev, Vento, Int.J.Mod.Phys. 18 (2009); Crede, Meyer, Prog.Part.Nucl.Phys. 63 (2009); Ochs, J.Phys.G40 (2013); Llanes-Estrada, EPJST 230 (2021); Vadacchino, 2305.04869]
- Lattice: [Morningstar, Peardon, Phys. Rev. D60 (1999); Athenodorou, Teper, JHEP11 (2020); Gregory et al., JHEP10 (2012); Brett et al., AIP Conf.Proc. 2249 (2020); Chen et al., 2111.11929; . . .]
- Hamiltonian many body methods: [Szczepaniak, Swanson, Ji, Cotanch, PRL 76 (1996); Szczepaniak, Swanson, Phys. Lett. B 577 (2003); . .]
- Chiral Lagrangians: [Janowski, Parganlija, Giacosa, Rischke, Phys. Rev. D 84 (2011); Eshraim, Janowski, Giacosa, Rischke, Phys. Rev. D 87 (2013); ...]
- Holographic QCD: [Brower, Mathur, Tan, Nucl. Phys. B 587 (2000); Colangelo, De Fazio, Jugeau, Nicotri, Phys. Lett. B 652 (2007); Brünner, Parganlija, Rebhan, Phys. Rev. D 93 (2016); Hechenberger, Leutgeb, Rebhan, Phys. Rev. D 107 (2023); ...]
- Gribov-Zwanziger framework: [Dudal, Guimaraes, Sorella, Phys. Lett. B 732 (2014)]
- Functional studies: [Meyers, Swanson, Phys.Rev.D87 (2013); Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015); Souza et al., Eur.Phys.J.A56 (2020); Kaptari, Kämpfer, Few Body Syst. 61 (2020); MQH, Phys.Rev.D 101 (2020); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020); Pawlowski et al., 2212.01113]

Glueball calculations: Lattice

Lattice methods

Pure gauge theory:
No dynamic quarks.
\rightarrow "Pure" glueballs

- [Morningstar, Peardon, Phys. Rev. D60 (1999)]: standard reference
- [Athenodorou, Teper, JHEP11 (2020)]: improved statistics, more states

[Morningstar, Peardon, Phys. Rev. D60 (1999)]

Glueball calculations: Lattice

Lattice methods

Pure gauge theory:
No dynamic quarks.
\rightarrow "Pure" glueballs

- [Morningstar, Peardon, Phys. Rev. D60 (1999)]: standard reference
- [Athenodorou, Teper, JHEP11 (2020)]: improved statistics, more states
"Real QCD":
- [Gregory et al., JHEP10 (2012)]
- [Brett et al., AIP Conf.Proc. 2249 (2020)]
- [Chen et al., 2111.11929]
- [Vadacchino, Lattice2022, 2305.04869]

Challenging:

- Much higher statistics required (poor signal-to-noise ratio)
- Continuum extrapolation and inclusion of fermionic operators still to be done
- Mixing with $\bar{q} q$ challenging
- $m_{\pi}=360 \mathrm{MeV}$
- Small unquenching effects found

[^0]
Functional spectrum calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016); Eichmann,
Few Body Syst. 63 (2022)]

Functional spectrum calculations

Functional methods successful in describing many aspects of the hadron spectrum qualitatively and quantitatively!

[Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog.Part.Nucl.Phys. 91 (2016); Eichmann,
Few Body Syst. 63 (2022)]

Workhorse for more than 20 years: Rainbow-ladder truncation with an effective interaction, e.g., Maris-Tandy (or similar).

restricted structure of equations $\left(\Gamma_{\mu} \rightarrow \gamma_{\mu}\right)$
IR strength + perturbative UV
Results for mesons beyond rainbow-ladder, e.g., [Williams, Fischer, Heupel, Phys.Rev.D 93 (2016)].

Functional glueball calculations

Glueballs? Rainbow-ladder?

Functional glueball calculations

Glueballs? Rainbow-ladder?

There is no rainbow for gluons!

Functional glueball calculations

Glueballs? Rainbow-ladder?

There is no rainbow for gluons!

Model based BSE calculations
$(J=0)$:

- [Meyers, Swanson, Phys.Rev.D87 (2013)]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015)]
- [Souza et al., Eur.Phys.J.A56 (2020)]
- [Kaptari, Kämpfer, Few Body Syst. 61 (2020)]

Functional glueball calculations

Glueballs? Rainbow-ladder?

There is no rainbow for gluons!

Model based BSE calculations $(J=0)$:

- [Meyers, Swanson, Phys.Rev.D87 (2013)]
- [Sanchis-Alepuz, Fischer, Kellermann, von Smekal, Phys.Rev.D92, (2015)]
- [Souza et al., Eur.Phys.J.A56 (2020)]
- [Kaptari, Kämpfer, Few Body Syst. 61 (2020)]

Alternative: Calculated input [MQH, Phys.Rev.D 101 (2020)]

- $J=0$: [MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]
- $J=0,2,3,4$: $[\mathrm{MQH}$, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

Extreme sensitivity on input!

Bound state equations for QCD

- Require scattering kernel K and propagator.

Bound state equations for QCD

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes Γ couple.

Bound state equations for QCD

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

Bound state equations for QCD

Focus on pure glueballs.

- Require scattering kernels K and propagators.
- Quantum numbers determine which amplitudes Γ couple.
- Ghosts from gauge fixing

One framework

- Natural description of mixing.
- Similar equations for hadrons with more than two constituents

Kernels

Systematic derivation from 3PI effective action: [Berges, Phys. Rev. D 70 (2004); Carrington, Gao, Phys. Rev. D 83 (2011)]

Self-consistent treatment of 3-point functions requires 3-loop expansion.

[Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631 (2015); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]

Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

\qquad -1
$=$ \qquad -1

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ...
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex, three-gluon vertex, four-gluon vertex, ...
- \rightarrow MQH, Phys.Rev.D 101 (2020)

Correlation functions of quarks and gluons

Equations of motion: 3-loop 3PI effective action

\rightarrow [Review: MQH, Phys.Rept. 879 (2020)]

- Conceptual and technical challenges: nonperturbative renormalization, two-loop diagrams, convergence, size of kernels, ..
- Self-contained: Only parameters are the strong coupling and the quark masses!
- Long way, e.g., ghost-gluon vertex, three-gluon vertex, four-gluon vertex, ...
- \rightarrow MQH, Phys.Rev.D 101 (2020)

Start with pure gauge theory.

Landau gauge propagators

Self-contained: Only external input is the coupling! \rightarrow Ab-initio!

Landau gauge propagators

Self-contained: Only external input is the coupling! \rightarrow Ab-initio!
Gluon dressing function:

Family of solutions [von Smekal, Alkofer, Hauck,
PRL79 (1997); Aguilar, Binosi, Papavassiliou,
Phys.Rev.D 78 (2008); Boucaud et al., JHEP06 (2008);
Fischer, Maas, Pawlowski, Ann.Phys. 324 (2008);
Alkofer, MQH, Schwenzer, Phys. Rev. D 81 (2010)]
Nonperturbative completions of Landau gauge [Maas, Phys. Lett. B 689 (2010)]?

Three-gluon vertex:

Ghost dressing function:

Stability of the solution

- Agreement with lattice results.

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods:

3PI vs. 2-loop DSE:

Stability of the solution

- Agreement with lattice results.
- Concurrence between functional methods:

3PI vs. 2-loop DSE:

DSE vs. FRG:

[Cucchieri, Maas, Mendes, Phys.Rev.D77 (2008); Sternbeck et al., Proc.Sci. LATTICE2016 (2017); Cyrol et al., Phys.Rev.D 94 (2016); MQH, Phys.Ref.D101 (2020)]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for $d=3$ [MQH, Phys.Rev.D93 (2016)]

Stability of the solution: Extensions

- Three-gluon vertex: Tree-level dressing dominant, others subleading [Eichmann, Williams, Alkofer, Vujinovic, Phys.Rev.D89 (2014); Pinto-Gómez et al., 2208.01020]
- Four-gluon vertex: Influence on propagators tiny for $d=3$ [MQH, Phys.Rev.D93 (2016)]
- Two-ghost-two-gluon vertex [MQH, Eur. Phys.J.C77 (2017)]: (FRG: [Corell, SciPost Phys. 5 (2018)])

Correlation functions for complex momenta

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P)
$$

\rightarrow Eigenvalue problem for $\Gamma(P)$:
(1) Solve for $\lambda(P)$.
(2) Find P with $\lambda(P)=1$.
$\Rightarrow M^{2}=-P^{2}$

Correlation functions for complex momenta

$$
\lambda(P) \Gamma(P)=\mathcal{K} \cdot \Gamma(P)
$$

\rightarrow Eigenvalue problem for $\Gamma(P)$:
(1) Solve for $\lambda(P)$.
(2) Find P with $\lambda(P)=1$.

$$
\Rightarrow M^{2}=-P^{2}
$$

However:
Propagators are probed at $\left(q \pm \frac{P}{2}\right)^{2}=\frac{P^{2}}{4}+q^{2} \pm \sqrt{P^{2} q^{2}} \cos \theta=-\frac{M^{2}}{4}+q^{2} \pm i M \sqrt{q^{2}} \cos \theta$ \rightarrow Complex for $P^{2}<0$!

Time-like quantities $\left(P^{2}<0\right) \rightarrow$ Correlation functions for complex arguments.

Extrapolation of $\lambda\left(P^{2}\right)$

Extrapolation method

- Extrapolation to time-like P^{2} using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev. 167 (1968)]
- Average over extrapolations using subsets of points for error estimate

$$
f(x)=\frac{f\left(x_{1}\right)}{1+\frac{a_{1}\left(x-x_{1}\right)}{1+\frac{\partial_{2}\left(x-x_{2}\right)}{1+\frac{\partial_{3}\left(x-x_{3}\right)}{}}}}
$$

Coefficients a_{i} can determined such that $f(x)$ exact at x_{i}.

Extrapolation of $\lambda\left(P^{2}\right)$

Extrapolation method

- Extrapolation to time-like P^{2} using Schlessinger's continued fraction method (proven superior to default Padé approximants) [Schlessinger, Phys.Rev. 167 (1968)]
- Average over extrapolations using subsets of points for error estimate

Test extrapolation for solvable system:
Heavy meson [MQH, Sanchis-Alepuz, Fischer, Eur.Phys.J.C 80 (2020)]

$$
f(x)=\frac{f\left(x_{1}\right)}{1+\frac{a_{1}\left(x-x_{1}\right)}{1+\frac{a_{2}\left(x-x_{2}\right)}{1+\frac{\partial_{3}\left(x-x_{3}\right)}{\cdots}}}}
$$

Coefficients a_{i} can determined such that $f(x)$ exact at x_{i}.

Glueball results $\mathrm{J}=0$

Gauge-variant correlation functions:

Glueball results $\mathrm{J}=0$

Gauge-variant correlation functions:

Unique physical spectrum:

Spin-0 glueballs

Glueball results $\mathrm{J}=0$

Gauge-variant correlation functions:
Unique physical spectrum:

Spectrum independent! \rightarrow Family of solutions yields the same physics.

Amplitudes

Information about significance of single parts.

Ground state scalar glueball:
Amplitudes 0^{++}

Excited scalar glueball:
Amplitudes 0^{*++}

\rightarrow Amplitudes have different behavior for ground state and excited state. Useful guide for future developments.
\rightarrow Meson/glueball amplitudes: Information about mixing.

Glueball amplitudes for spin J

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

$$
\Gamma_{\mu \nu \rho \sigma \ldots}\left(p_{1}, p_{2}\right)=\sum \tau_{\mu \nu \rho \sigma \ldots}^{i}\left(p_{1}, p_{2}\right) h_{i}\left(p_{1}, p_{2}\right)
$$

Numbers of tensors:

J	$\mathrm{P}=+$	$\mathrm{P}=-$
0	2	1
1	4	3
>2	5	4

Increase in complexity:

- 2 gluon indices (transverse)
- J spin indices (symmetric, traceless, transverse to P)

Low number of tensors, but high-dimensional tensors!
\rightarrow Computational cost increases with J.

Glueball results

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

- Agreement with lattice results
- New states: $0^{* *++}, 0^{* *-+}, 3^{-+}, 4^{-+}$

Higher order diagrams

One-loop diagrams only:

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80
(2020); MQH, Fischer, Sanchis-Alepuz,

Eur.Phys.J.C81 (2021)]

Higher order diagrams

One-loop diagrams only:

[MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C81 (2021)]

Two-loop diagrams: subleading effects

- 0^{-+}: none
[MQH, Fischer, Sanchis-Alepuz, EPJ Web Conf. 258 (2022)]
- 0^{++}: $<2 \%$
[MQH, Fischer, Sanchis-Alepuz, HADRON2021, arXiv:2201.05163]
- 2^{++}: none

Summary and outlook

- Alternative to models in bound state equations: Direct calculation of input.
- Large system of equations may be necessary.

Pure glueball spectrum from first principles.

Tests

- Input:
- Agreement with other methods: lattice + continuum
- Extensions
- BSEs: Higher orders negligible

Summary and outlook

- Alternative to models in bound state equations: Direct calculation of input.
- Large system of equations may be necessary.

Pure glueball spectrum from first principles.

Tests

- Input:
- Agreement with other methods: lattice + continuum
- Extensions
- BSEs: Higher orders negligible

Summary and outlook

- Alternative to models in bound state equations: Direct calculation of input.
- Large system of equations may be necessary.

Pure glueball spectrum from first principles.

- Input:
- Agreement with other methods: lattice + continuum
- Extensions
- BSEs: Higher orders negligible

Summary and outlook

- Alternative to models in bound state equations: Direct calculation of input.
- Large system of equations may be necessary.

Pure glueball spectrum from first principles.

Tests

- Input:
- Agreement with other methods: lattice + continuum
- Extensions
- BSEs: Higher orders negligible

Summary and outlook

- Alternative to models in bound state equations: Direct calculation of input.
- Large system of equations may be necessary.

Pure glueball spectrum from first principles.

Tests

- Input:
- Agreement with other methods: lattice + continuum
- Extensions
- BSEs: Higher orders negligible

Future:

- +quarks \rightarrow QCD
- three-body bound state eq. $\rightarrow C=-1$

Thank you for your attention.

$J=1$ glueballs

Landau-Yang theorem

Two-photon states cannot couple to $J^{P}=1^{ \pm}$or $(2 n+1)^{-}$
[Landau, Dokl.Akad.Nauk SSSR 60 (1948); Yang, Phys. Rev. 77 (1950)].
(\rightarrow Exclusion of $J=1$ for Higgs because of $h \rightarrow \gamma \gamma$.)

Applicable to glueballs?
\rightarrow Not in this framework, since gluons are not on-shell.
\rightarrow Presence of $J=1$ states is a dynamical question.

$$
J=1 \text { not found here. }
$$

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.
Example: For $J^{P C}=0^{++}$glueball take $O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$:

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.
Example: For $J^{P C}=0^{++}$glueball take $O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$:

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Lattice: Mass exponential Euclidean time decay:

$$
\lim _{t \rightarrow \infty}\langle O(x) O(0)\rangle \sim e^{-t M}
$$

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.
Example: For $J^{P C}=0^{++}$glueball take $O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$:

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Functional approach: Complicated object in a diagrammatic language, 2-, 3- and 4-gluon contributions [MQH, Cyrol, Pawlowski, Comput.Phys.Commun. 248 (2020)]
\qquad

+ 3-loop diagrams
Leading order:
[Windisch, MQH, Alkofer, Phys.Rev.D87 (2013)]

Glueballs as bound states

Hadron masses from correlation functions of color singlet operators.
Example: For $J^{P C}=0^{++}$glueball take $O(x)=F_{\mu \nu}(x) F^{\mu \nu}(x)$:

$$
D(x-y)=\langle O(x) O(y)\rangle
$$

Put total momentum on-shell and consider individual 2-, 3- and 4-gluon contributions. \rightarrow Each can have a pole at the glueball mass.
A^{4}-part of $D(x-y)$, total momentum on-shell:

Kernel construction

From 3PI effective action truncated to three-loops: [Berges, Phys. Rev. D 70 (2004); Carrington, Gao, Phys. Rev. D 83 (2011)]

$$
\Gamma^{31}\left[\Phi, D, \Gamma^{(3)}\right]=\Gamma^{0,31}\left[\Phi, D, \Gamma^{(3)}\right]+\Gamma^{\text {int }, 31}\left[\Phi, D, \Gamma^{(3)}\right]
$$

Kernels constructed by cutting two legs:
gluon/gluon,ghost/gluon, gluon/ghost, ghost/ghost
[Fukuda, Prog. Theor. Phys 78 (1987); McKay, Munczek, Phys. Rev. D 40 (1989); Sanchis-Alepuz, Williams, J. Phys: Conf. Ser. 631 (2015); MQH, Fischer, Sanchis-Alepuz, Eur.Phys.J.C80 (2020)]

Charge parity

Transformation of gluon field under charge conjugation:

$$
A_{\mu}^{a} \rightarrow-\eta(a) A_{\mu}^{a}
$$

where

$$
\eta(a)= \begin{cases}+1 & a=1,3,4,6,8 \\ -1 & a=2,5,7\end{cases}
$$

Color neutral operator with two gluon fields:

$$
A_{\mu}^{a} A_{\nu}^{a} \rightarrow \eta(a)^{2} A_{\mu}^{a} A_{\nu}^{a}=A_{\mu}^{a} A_{\nu}^{a} .
$$

$\Rightarrow C=+1$
Negative charge parity, e.g.:

$$
\begin{aligned}
d^{a b c} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c} \rightarrow & -d^{a b c} \eta(a) \eta(b) \eta(c) A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c}= \\
& -d^{a b c} A_{\mu}^{a} A_{\nu}^{b} A_{\rho}^{c}
\end{aligned}
$$

Only nonvanishing elements of the symmetric structure constant $d^{a b c}$: zero or two indices equal to 2,5 or 7 .

Three-gluon vertex

[Cucchieri, Maas, Mendes, Phys. Rev. D 77 (2008); Sternbeck et al., 1702.00612; MQH, Phys. Rev. D 101 (2020)]

- Simple kinematic dependence of three-gluon vertex (only singlet variable of S_{3})
- Large cancellations between diagrams

Ghost-gluon vertex

Ghost-gluon vertex:

[Maas, SciPost Phys. 8 (2019);
MQH, Phys. Rev. D 101 (2020)]

- Nontrivial kinematic dependence of ghost-gluon vertex
- Qualitative agreement with lattice results, though some quantitative differences (position of peak!).

Gauge invariance

Couplings can be extracted from each vertex.

- Slavnov-Taylor identities (gauge invariance): Agreement perturbatively (UV) necessary.
[Cyrol et al., Phys.Rev.D 94 (2016)]
- Difficult to realize: Small deviations \rightarrow Couplings cross and do not agree.
- Here: Vertex couplings agree down to GeV regime (IR can be different).

Landau gauge propagators in the complex plane

Simpler truncation:
[Fischer, MQH, Phys.Rev.D 102 (2020)]

Landau gauge propagators in the complex plane

Simpler truncation:

[Fischer, MQH, Phys.Rev.D 102 (2020)]
Ray technique for self-consistent solution of a DSE:

- Current truncation leads to a pole-like structure in the gluon propagator.
- Analyticity up to 'pole' confirmed by various tests (Cauchy-Riemann, Schlessinger, reconstruction)

Landau gauge propagators in the complex plane

Simpler truncation:

Landau gauge propagators in the complex plane

Simpler truncation:

\rightarrow Opening at $q^{2}=p^{2}$.

Landau gauge propagators in the complex plane

Simpler truncation:

\rightarrow Opening at $q^{2}=p^{2}$.
Appearance of branch cuts for complex momenta forbids integration directly to cutoff.

Extrapolation for glueball eigenvalue curves

Several curves: ground state and excited states.

[^0]: No quantitative results yet.

