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Phase diagram of QCD

Zero density axis well known

transition temperature

zero temperature:
hadron masses
scattering amplitudes, etc.

At nonzero density  much less solid knowledge

What phases are present?
Is there a critical point?
compressibility of nuclear matter?

Why is non-zero density so hard?



How does the Glasma equilibrate?
   Non-equilibrium Quantum Field theory

For hydrodynamics one needs equilibrium values of:    
                      Equation of State  
      Transport coefficients: e.g. viscosity

“easy” to calculate 

Hard problem
Real-time correlator

|Ψ(t=0)⟩  →  |Ψ(t )⟩

η=
1
T V

∫0

∞

dt ⟨σ xy(0)σ xy(t )⟩

Why is real-time QFT so hard?

Heavy-Ion collisions



⟨X ⟩=
1
Z

Tr X e−β(H−μ N )
=

1
Z
∑C

W [C ] X [C ]=
1
N
∑i

X [C i]

If the Weight is positive, build a Markov chain with the Metropolis algorithm

Typically exponentially many configurations, 
  no direct summation possible.

We are interested in a system
Described with the partition sum: 

...→C i−1→C i→C i+1→...

Probability of visiting C p(C )∼W [C ]

Z=∫Dϕe−S=Tr e−β(H−μ N )
=∑C

W [C ]

This works if we have W [C ]≥0

Otherwise we have a Sign problem

Importance Sampling



Sign problems

Z=Tr e−β(H−μN)
=∫DUe−S [U ]det (M [U ])

Inbalanced Fermi gas

 Real-time evolution in QFT

Non-zero density 

ei S
“strongest” sign problem

Many systems:  Bose gas
XY model
SU(3) spin model
Random matrix theory
QCD

S=F μν F
μν
+iΘϵ

μ νθρF μν F θρ

And everything else with complex action

w [C ]=e−S [C ]        w [C ] is positive←→S [C ]  is real

Theta therm



Non-zero chemical potential

Euclidean SU(3) gauge theory with fermions:

For  nonzero chemical potential, the fermion determinant is complex

Sign problem             Naive Monte-Carlo
                                       breaks down

QCD sign problem

Importance sampling is possiblefor  det (M [U ])>0

det (M (U ,−μ ∗ ))=(det (M (U ) ,μ)) ∗

Z=∫DUexp(−SE [U ])det (M [U ])



How to solve the sign problem (of QCD)?

Extrapolation from a positive ensemble

Taylor expansion

Reweighting

Analytic continuation from imaginary sources 
                                              (chemical potentials, theta angle,..)

⟨X ⟩W=
∑c

W c X c

∑c
W c

=
∑c

W 'c (W c/W ' c)X c

∑c
W ' c(W c /W ' c)

=
⟨(W /W ')X ⟩W '
⟨W /W ' ⟩W '

Z (μ)=Z (μ=0)+
1
2
μ2∂μ

2 Z (μ=0)+...

Other ideas (not yet for QCD)

Complex Langevin

Lefschetz thimbles ,  sign improved manifolds,  
Dual variables, worldlines,
Density of States, Subsets, Quantum computing, ...  

Complexified variables  – enlarged manifolds 

Using analyticity



In QCD direct simulation only possible at

μTaylor extrapolation, Reweighting, continuation from imaginary    , canonical ens.
    all break down around  

μ=0

μq
T
≈1

μB
T
≈3

Around the transition temperature
            Breakdown at μq≈150−200 MeV          μB≈450−600 MeV 

Results on

NT=4,N F=4,ma=0.05

Agreement only at μ/T<1

using 
  Imaginary mu,
  Reweighting,
  Canonical ensemble



Stochastic process for  x:

Gaussian noise

Averages are calculated along the trajectories:

⟨O ⟩=limT→∞

1
T
∫
0

T

O(x (τ))d τ=
∫e−S (x)O(x)dx

∫e−S (x)dx

Langevin Equation (aka. stochatic quantisation)

⟨η(τ)⟩=0

Given an action S (x)

⟨η(τ)η(τ ' )⟩=δ(τ−τ ')
d x
d

=−
∂S
∂ x

 

Random walk in configuration space

Numerically,
  results are extrapolated to Δ τ→0



Stochastic process for  x:

d x
d

=−
∂S
∂ x

 

Gaussian noise

Analytically continued observables are calculated along the trajectories:

⟨O ⟩=limT→∞

1
T∫0

T

O(x (τ)+iy (τ))d τ

Complex Langevin Equation

⟨η(τ)⟩=0

Given an action S (x)

⟨η(τ)η(τ ' )⟩=δ(τ−τ ')

The field is complexified

real scalar            complex scalar

link variables: SU(N)              SL(N,C)
compact          non-compact

det (U )=1, U +≠ U−1

d x
d

=−
∂S
∂ x

 

1
Z∫ P comp( x )O ( x )dx=

1
Z∫ P real ( x , y )O ( x+iy )dx dy    ?

〈 x2〉real  →  〈 x2− y2〉complexified



S [x ]=σ x2+i λ x

Gaussian Example

σ=1+i λ=20

d
d τ

(x+i y )=−2σ(x+iy)−iλ+η

CLE

P (x , y )=e−a(x−x0)
2
−b( y− y0)

2
−c (x−x0)( y− y0)

Gaussian distribution 
around critical point

∂ S (z)
∂ z ]

z0

=0

Measure 
on real axis



Klauder '83, Parisi '83, Hueffel, Rumpf '83, Karsch. Wyld '84, Gausterer, Klauder '86. 
Matsui, Nakamura '86, …  
Interest went down as difficulties appeared
Renewed interest in connection of otherwise unsolvable problems
applied to nonequilibrium: Berges, Stamatescu '05, …
aimed at nonzero density QCD: Aarts, Stamatescu '08  …   many important results since revival

“troubled past”:  Convergence to wrong results
                           Lack of theoretical understanding
                           Runaway trajectories
            

S (φ )=iβcos φ+i φ

Correct in one parameter region
Incorrect in an other

Convergent in both



Potential problems of CLE
    

       
fast enough decay

holomorphic action

Ergodicity

Complex Fokker Planck operator
 with good spectrum    

 

[Aarts, Seiler, Stamatescu (2009)
 Aarts, James, Seiler, Stamatescu (2011)
Aarts. Seiler, Sexty, Stamatescu (2017)
Salcedo, Seiler (2018)
Seiler (2020) 
Seiler,Sexty, Stamatescu (2023)]

then CLE converges to the correct result

P (x , y )→0  as x , y→∞

S (x)

Requirements for correct results:

Lc=∑i
(∂i−∂iS)∂i

unique null-mode, negative real parts



Problem: decay not fast enough

boundary terms can be nonzero
explicit calculation of boundary terms possible 

Unambigous detection of boundary terms

Observable cheap also for lattice systems

given by plateau as 'cutoff' Y→∞

Measuring “corrected observable”
       in case boundary term nonzero

[Scherzer, Seiler, Sexty, Stamatescu (2018)+(2019)]

Using an interpolation function

F (t ,0)

CLE works, if 

∫ dxρ(x )O(x)      =      ∫dx dy P(x , y )O(x+iy )
What we want What we get with CLE

F (t , t)

F (t , τ)

=
shown with partial integrations



S=SW [U μ]+ln DetM (μ)

measure has zeros
complex logarithm has a branch cut
                    meromorphic drift 

Problem: Non-holomorphic action for nonzero density

(Det M=0)

No problems if poles are not ‘touched’ by distribution

satisfied for: HDQCD, full QCD at high temperatures 

[Aarts, Seiler, Sexty, Stamatescu ‘17]

Already pathologic for real Langevin:

M=x2e−x
2

zero measure at  x=0→ process stays left or right
 2 independent stationary states →non-ergodic



Lc=∑i
∂i

2+K i∂i

Fokker Planck operator

Problem: Spectrum on the wrong side 

  At imaginary magnetic field 
          Lee-Yang zeroes appear

S=
1
2
m2

ϕ
2
+ λ

24
ϕ

4
+H ϕ     →       Lc=∂ z

2
+ (−m

2 z−λ
6
z3
−H )∂z

At each Lee-Yang zero 
    an eigenvalue appears with Re(λ)>0

[Seiler, Sexty, Stamatescu (2023)]

Boundary terms signal also this problem

Determines ρ(x , t )=et Lc
T

ρ( x ,0)

Toy model: 

Slow decay is also present:

Open question: what happens with spectrum if kernels are used?



In full QCD this confirms already known signals
Quantifies error

Boundary terms appear at small β    =   large lattice spacing

Faster than exponential decay of histograms of observables 
Drift criterion = same for drift term observable

[Hansen, Sexty in. prep]

Boundary terms



Real-time two point function of quantum oscillator

=1

Asymmetric
contour:

0.01

0.99

Im t

Re t

Thermal equilibrium: 
     periodic boundary cond.              Imaginary extent gives =

1
T

short real-time extent

large real-time extent

Boundary terms appear

[Berges, Borsanyi, Sexty, Stamatescu (2006)]



Kernels in the Langevin equation

ż=−
∂ S
∂ z

+η → ż=−K (z)
∂ S
∂ z

+
∂K (z)
∂ z

+√K (z)η

Introducing a Kernel

Leaves the stationary distribution unchanged

Many variables  –  matrix Kernel

d ϕi
d τ

=−H ij(ϕ)H jk
T (ϕ)

∂ S
∂ϕk

+∂k (H ij(ϕ)H jk
T (ϕ))+H ij(ϕ)ηj

Can one use a Kernel to decrease boundary terms in the CLE?

Yes! search for a kernel using stochastic gradient descent
    Loss function:  Size of the distribution in imaginary directions 

[Lampl, Sexty 2309.06103]

[Soderberg (1987), Okamoto et. al. (1988)]

Fokker-Planck:   ∂τ P (z , τ)=∂ zK (z)(∂z+∂z S)P (z , τ)



Stochastic gradient descent

N (ϕ)=∑t
F1(Reϕt )

2+F2(Imϕt )
2Loss function:

Learning step: H ij→H ij−Δ L
∂N
∂H ij

Wait for convergence 

average gradient 
   over many steps



First step: Field independent matrix kernel

real part imaginary part

t=2.0

t=1.2
Real-time extent



Boundary terms

Boundary terms of ϕ(t )2

Without Kernel:

With optimized kernel:

Actually, for an anharmonic quantum oscillator it’s also easy
to calculate exact results (e.g. diagonalize Hamiltonian)
                  Compare to exact 



Without kernel With learned kernel

t=1.6

t=1.2



Increasing real time extent, boundary terms appear again

Without kernel With learned kernel

t=2.0

t=2.0



Next step:  Field dependent kernels

H ij(ϕ)=H ij
(1)
+H ij

(2)
(ϕ)

H ij
(1)
= Optimized constant kernel from before

H ij
(2)
(ϕ)=field dependent kernel to be optimized

H ij
(2)
= neural network 

S=
1
2
σ z2

+
1
4
λ z4

¿

K (z)=C1e
−z2/a e−i 1+C2(1−e

−z2/a
)e−iθ2

Small kernel leads to small imaginary parts
          Loss function needs to punish small            valuesC1,C2

H ij= simple ansatz 

Need to keep holomorphic kernel

→activation function= polynomial, exp or combinations of these

Complex analysis            unbounded activation functions
                              Long tailed distributions 

More work needed...



Scalar fields in 1+1 dimension

[Alexandru et. al. (2022)]

Dense constant Kernel 
on the Schwinger-Keldysh contour

Thimble result till t=1.6

CLE till t=3.2 (at least)

[Alvestad, Rothkopf, Sexty (in prep.)]

two point function: ⟨ϕ(0)ϕ(t )⟩

N x=16  N t=32  N τ=4



Pressure of the QCD Plasma at non-zero density

p

T 4=
ln Z

V T 3 Derivatives of  the pressure are  directly measureable
                 Integrate from T=0

First integrate along the temperature axis, then explore μ>0

[Engels et. al. (1990)]

Taylor expansion [Bielefeld-Swansea (2002-)]

Simulating at imaginary      to calculate susceptibilities
          [de Forcrand, Philipsen (2002-)]

μ



Pressure of the QCD Plasma at non-zero density

Δ ( pT 4 )=∑n>0,even
cn(T ) (

μ

T )
n

If we want to stay at  μ=0

Δ ( pT 4 )= p

T 4 (μ=μq)−
p

T 4 (μ=0)

c4=
1

24
1

N s
3N T

∂4 ln Z

∂μ
4

c2=
1
2

NT

N s
3

∂2 ln Z

∂μ2

∂2 ln Z

∂μ
2 =N F

2
⟨T 1

2
⟩+N F ⟨T 2⟩

∂4 ln Z

∂μ
4 =−3 (⟨T 2⟩+⟨T 1

2
⟩ )

2
+3 ⟨T 2

2
⟩+⟨T 4⟩

+⟨T 1
4⟩+4 ⟨T 3T 1⟩+6 ⟨T 1

2T 2⟩

T 1/N F=Tr (M−1
∂μM )

T i+1=∂μT i
T 2/N F=Tr (M−1

∂μ
2M )−Tr ((M−1

∂μM )
2 )

T 3/N F=Tr (M−1∂μ
3M )−3 Tr(M−1∂μM M−1∂μ

2 M )

+2 Tr ((M−1∂μM )3 )
T 4 /N F=Tr (M−1

∂μ
2M )−4 Tr (M−1

∂μM M−1
∂μ

3 M )

−3 Tr (M−1∂μ
2M M−1∂μ

2 M )−6 Tr ((M−1∂μM )4 )
+12 Tr ((M−1

∂μM )
2M−1

∂μ
2 M )

Measuring the coefficients of the Taylor expansion



Δ ( pT 4 )= p

T 4 (μ=μq)−
p

T 4 (μ=0)=
1

V T 3 ( lnZ (μ)−ln Z (0))

If we can simulate at μ>0

ln Z (μ)−ln Z (0)=∫0

μ

dμ
∂ ln Z (μ)

∂μ
=∫0

μ

dμn(μ)

Using CLE it’s enough to measure the density  – much cheaper

Pressure of the QCD Plasma using CLE
[Sexty (2019)]

n(μ)=⟨Tr(M−1(μ)∂μM (μ))⟩



Pressure with improved action
In deconfined phase 
Symanzik gauge action 
stout smeared staggered fermions

Good agreement at small 
CLE calculation is much cheaper

[Sexty (2019)]

μ

further interesting quantities:  Energy density, quark number susceptibility, ... 



Mapping out the phase transition line

Follow the phase transition line
   starting from μ=0

Using Wilson fermions

Fixed lattice spacing and spatial vol.  
      scanN t

[Scherzer, Sexty, Stamatescu (2020)]



Detection of the phase transition line

B3=
⟨O3⟩

⟨O2
⟩

3/2

O=P−⟨P ⟩   with P=√PbarePbare−1

no renormalization 
zero crossing defines transition

Binder cumulant

Shift method

Critial point at μ4

Works well for small μ

Define T c (μ) as  ϕ(T c(μ),μ)=C
e.g. B3,  chiral condensate,

     baryon number susceptibility



Can follow the line to 
       quite high μ/T

Lattice spacing:

Pion mass:

Volumes:  83 ,123 ,163

Finite size effects large

Consistent results  

a=0.065  fm

mπ=1.3  GeV

κ2≈0.0012

κ2=0.015

In literature
  For physical pion mass 

T c(μ)

T c (0)
=1−κ2 (

μ

T c (0) )
2

Open questions
Possible for lighter quarks?
Finite size scaling?
Where is the upper right corner of Columbia plot?  
                                           Critical point nearby?



Summary

CLE has potential problems with boundary terms and poles

Monitoring of the process is required: 
      measuring Boundary terms 

      lattice models with cheap observable
      Correction with higher order boundary terms

 Kernels help elimnating boundary terms (if they are present)
   Real time scalar with learned kernel

 Results for the EoS and Phase diag. of QCD

 Dynamical stabilization might help at low temperatures of QCD
     See next talk by Michael Hansen 



Long runs with CLE

Unitarity norm has a tendency to grow slowly (even with gauge cooling)

Runs are cut if it reaches

Thermalization usually fast  
       – might be problematic close to critical point or at low T
 

∼0.1

UN=∑x ,ν
Tr (U x νU x ν

+ −1)



Getting closer to continuum limit

Test with Wilson fermions
Increase     by 0.1      – reduces lattice spacing by 30% 
  change everything else to stay on LCP  

β

behavior of Unitarity norm improves
autocorrelation time decreases as lattice gets finer
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