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Motivation

• Investigate compressibility of nuclear
matter, and existence of critical point

• Sign-problem

• Difficult HMC calculations for large 
chemical potential

• Reweighting (Determinant costs 𝑂(𝑁𝑠
9))

• Taylor expansion (Limited convergence
radius) 
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Sign-problem

• Non-zero chemical potential

• Complex action => complex valued 
probability densities?

• This breaks importance sampling

• Metropolis-Hastings, Heatbath….

• Models with these problems

• XY-model, SU(3) spin model, QCD
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Complex Langevin

• Complex action => Sign problem

• Using stochastic equation
instead of importance sampling.

• With the correct configuration space
𝜌 𝜙 ∝ exp(−𝑆 𝜙 )

• Complex Langevin equation (CLE)
ℜ 𝑑𝜙 = ℜ 𝐾 𝑑𝑡 + 𝑑𝜔, ℑ 𝑑𝜙 = ℑ 𝐾 𝑑𝑡

𝐾 = −
𝑑

𝑑𝜙
𝑆 𝜙

𝐿𝑐 = 𝜕𝑧 + 𝐾𝑧 𝜕𝑧

𝜕𝑡𝑃 𝜙, 𝑡 = 𝐿𝑐𝑃 𝜙, 𝑡
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Complex Langevin Operator

• 𝐿𝐶
𝑇 = 𝜕𝑥 𝜕𝑥 − 𝐾𝑥

• Solves the Fokker-Planck Equation (FPE)
𝐿𝐶𝜌 𝑥 = 𝜕𝑡𝜌 𝑥

Since 𝜌 𝑥 ∝ exp(−𝑆 𝑥 ), makes both sides of FPE equal to 0, due to 
the choice of the drift
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Boundary terms

• Interpolation function between 𝑃 𝑡  and 𝜌 𝑡

• 𝐹𝑂 𝑡, 𝜏 = ∫ 𝑃 𝑥, 𝑦, 𝑡 − 𝜏 exp 𝜏𝐿𝑐 𝑂 𝑥 + 𝑖𝑦 𝑑𝑥𝑑𝑦

𝐹𝑂 𝑡, 0 = ⟨𝑂⟩𝑃 𝑡 , 𝐹𝑂 𝑡, 𝑡 = ⟨𝑂⟩𝜌 𝑡

• If 𝐹𝑂 𝑡, 𝜏 is constant in tau, then the 
observables are correct
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𝑆 = 𝑖𝛽cos(𝜙)CLE result at 𝑡 = 200

CLE result at 𝑡 = 10

Correct result



Cut-off effect

• Big error at run-aways

• Limit the imaginary part, to “cut-off” run-aways

𝐵𝑛 𝑌, 𝑡 = 𝜕𝜏
𝑛𝐹𝑂 𝑡, 𝜏 ȁ𝜏=0

= −∫
𝑦 <𝑌

𝜕𝑡
𝑛𝑃 𝑥, 𝑦, 𝑡 𝑂(𝑥 + 𝑖𝑦)𝑑𝑥𝑑𝑦 + ∫

ȁ𝑦ȁ<𝑌
𝑃 𝑥, 𝑦, 𝑡 𝐿𝑐

𝑛𝑂(𝑥 + 𝑖𝑦)𝑑𝑥𝑑𝑦

• First integral vanishes as 𝑡 → ∞

• Second is easy to calculate on the lattice

• Higher order boundary terms 

𝐵𝑛 𝑌, 𝑡 = න
ȁ𝑦ȁ<𝑌

𝑃 𝑥, 𝑦, 𝑡 𝐿𝑐
𝑛 𝑂(𝑥 + 𝑖𝑦)𝑑𝑥𝑑𝑦

• Use unitarity norm, for gauge fields UN= 𝑇𝑟[𝑈𝜇 𝑥 𝑈𝜇
† 𝑥 − 1]
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Toy model

• Action:

𝑆 𝜙 = 𝑖𝛽 cos 𝜙 +
1

2
𝑠𝜙2

• Observable:
𝑂 𝜙 = exp(𝑖𝜙)

• Bounary term:
𝐿𝑐𝑂 𝜙 = 𝑖 𝑖 − 𝑆′ 𝜙 exp 𝑖𝜙
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Boundary terms 
correction

• Correcting using boundary terms

𝐹 𝑡, 0 − 𝐹 𝑡, 𝑡 =
𝐵1
2

𝐵2
• 𝐵2 might be difficult to get
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Updating 
the lattice 
using CLE

• Update:

𝑈𝜇
𝑛+1 𝑥 = exp 𝑖𝜆𝑎 𝜖𝐾𝜇𝑎 𝑥 + 𝜖 𝜂𝜇𝑎 𝑥 𝑈𝜇

𝑛 𝑥

• Using the left derivative
𝐾𝜇𝑎 𝑥 = −𝐷𝜇𝑎𝑆 𝑥 ,

𝐷𝜇𝑎𝑓 𝑈 = 𝜕𝛼𝑓 exp 𝑖𝛼𝜆𝑎 𝑈𝜇 𝑥 ቚ
𝛼=0

• If the drift is complex ⇒ 𝑈 ∈ 𝑆𝐿 𝑁

• Needs gauge cooling after each step 
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Reweighting 

• Change the weights

𝑥 𝑤 =
∑𝑤𝑖𝑥𝑖
∑𝑤𝑗

=

∑𝑤𝑖𝑥𝑖
𝑤𝑖
′

𝑤𝑖
′

∑𝑤𝑗
𝑤𝑗
′

𝑤𝑗
′

=

∑𝑤𝑖
′𝑥𝑖

𝑤𝑖

𝑤𝑖
′

∑𝑤𝑗
′ 𝑤𝑗
𝑤𝑗
′

=

𝑥
𝑤
𝑤′

𝑤′

𝑤
𝑤′

𝑤′

• Used in HMC, to simulate non-zero chemical 
potential
𝑤

𝑤′
=

det𝑀 𝜇

det𝑀 𝜇 = 0
= exp −

𝑉

𝑇
Δ𝐹 𝜇, 𝑡

• Large 𝜇 ⇒
𝑤

𝑤′  goes towards zero 
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Results – Plaquettes 
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Results – Polyakov loops 
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Dynamical 
stabilization
(Attanasio, Jäger, arxiv: 1808.04400)

• Introducing a Gauge invariant force, to 
the drift

• Designed to grow rapidly with the 
unitarity norm
𝐾𝜇𝑎 𝑥 → 𝐾𝜇𝑎 𝑥 + 𝑖𝛼𝐷𝑆𝑀𝑎 𝑥

𝑀𝑎 𝑥 = 𝑖𝑏𝑎 

𝑐

𝑏𝑐 𝑥 𝑏𝑐 𝑥

3

𝑏𝑎 𝑥 = 𝑇𝑟 𝜆𝑎

𝜇

𝑈𝜇 𝑥 𝑈𝜇
† 𝑥
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https://arxiv.org/abs/1808.04400


Dynamical stabilization - methods

• 𝐾𝜇𝑎 𝑥 → 𝐾𝜇𝑎 𝑥 + 𝑖𝛼𝐷𝑆𝑀𝜇𝑎 𝑥

• Where 𝑀𝜇𝑎 now depends on the direction

• 𝑀𝜇𝑎 𝑥 = 𝑖𝑇𝑟 𝜆𝑎𝑈𝜇 𝑥 𝑈𝜇
† 𝑥 ൬

൰

2𝑇𝑟 𝑈𝜇 𝑥 𝑈𝜇
† 𝑥

2
−

2

3
𝑇𝑟 𝑈𝜇 𝑥 𝑈𝜇

† 𝑥
2 3

• Note that unitary links => 𝑀𝜇𝑎 = 0
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Simple test 
model

• Action:
−𝑆 = 𝛽1𝑇𝑟 𝑈 + 𝛽2𝑇𝑟 𝑈

−1

𝛽1 = 𝛽 + 𝜅𝑒𝜇 , 𝛽2 = 𝛽 + 𝜅𝑒−𝜇

•  For 𝜇 ≠ 0, a sign problem appears, since 𝑆 is 
complex

• Drift:
𝐾𝑎 = 𝑖𝛽1𝑇𝑟 𝜆𝑎𝑈 − 𝑖𝛽1𝑇𝑟 𝜆𝑎𝑈

−1

• And finally 

𝜆𝑎𝐾𝑎 = 2𝑖 𝑀 −
1

3
𝑇𝑟 𝑀 ,𝑀 = 𝛽1𝑈 − 𝛽2𝑈

−1
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Dynamical Stabilization
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𝑆𝑈⊥(3)

𝑆𝑈(3)

𝐾𝑎 𝐾𝑎 + 𝑖𝛼𝐷𝑆𝑀𝑎

𝐾𝑎 + 𝛼𝐷𝑆𝑀𝑎



Increasing along 𝑖𝛼𝐷𝑆𝑀𝑎
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Increasing along 𝛼𝐷𝑆𝑀𝑎
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Small lattice 
with DS-
corrections 
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DS and Drift terms

Considering the drift term and the DS, for various 
values of 𝛽.

• constant for large beta (correct convergence)

• decreasing for low beta (incorrect 
convergence)

22



The observables

Tests with 𝛼𝐷𝑆 = 106

• Plaquettes  (spatial/temporal)

• Poliakov Loop (normal/inverse)

• Baryonic density

• (Chiral Condensate) 
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DynStab – High temperature
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• Polyakov loop



DynStab – High temperature
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Chiral condensate



Dynstab - Low Temperature 
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Polyakov loop



Dynstab - Low Temperature 
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Chiral condensate



Conclusion
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CL works very well for non-zero density 
(high temperature) 

Low temperature deviations can be 
estimated using boundary terms

Dynamical Stabilization can slow the 
drifts from SU(3) to SL(3)

Dynamical Stabilization can help correct 
most observables in low temperature



Calculating the boundary

• Long and difficult calculations

• Σ =
1

Ω
𝑇𝑟 𝑀−1

• 𝐿𝑐Σ =
2

Ω

𝑁2−1

𝑁
𝑇𝑟 𝑀−1 −𝑚𝑇𝑟 𝑀−2

+
1

ȁΩȁ


𝑗∈Ω

2𝑇𝑟 𝑀−1 𝐷𝑎
𝑗
𝑀 𝑀−1 𝐷𝑎

𝑗
𝑀 𝑀−1

+
1

Ω


𝑗∈Ω

𝐾𝑎
𝑗
𝐷𝑎
𝑗
𝑇𝑟 𝑀−1
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