Towards TMDs with contour deformations

Eduardo Ferreira

with G. Eichmann, A. Stadler

ACHT2023: Non-perturbative Aspects of Nuclear, Particle and Astroparticle Physics, Leibnitz, Austria

Hadrons on the Light Front

Goal: Use DSE/BSE to study hadrons on the light front, $x^{+}=0$.

- Natural frame for defining parton distribution functions: PDFs, TMDs, ...

Future: COMPASS/AMBER @ CERN EIC @ Brookhaven National Laboratory.
(AMBER: arXiv:1808.00848)
(EIC: Eur. Phys. J. A 52.9 (2016))

Hadronic quantities

- Bethe-Salpeter Wavefunction
$\langle 0| \mathrm{T} \Phi(x) \Phi(0)|P\rangle$

- Generic Correlator $\left\langle P_{f}\right| \mathrm{T} \Phi(x) \mathcal{O} \Phi(0)\left|P_{i}\right\rangle$

\square With $x^{+}=x^{0}+x^{3}, x^{-}=x^{0}-x^{3}, \vec{x}_{\perp}=\left\{x^{1}, x^{2}\right\}$.

(Lorce, Pasquini, Vanderhaeghen; 2011), (Picture: Diehl, 2016); (Diehl, 2003); (Meissner, Goeke, Metz, Schlegel; 2008); (Meissner, Metz, Schlegel; 2009)

Light-Front WF and PDAs

- We explored successfully the calculation of LFWF and PDAs.

Definition of the TMD

$$
\operatorname{TMD}(X, \alpha) \propto-2 i \sqrt{X} \int_{-\infty}^{\infty} d \omega \mathcal{G}(X, \omega, t, \alpha)
$$

1 Triangle diagram

2. TMDs and PDFs

3 Four-point function

Writing the hadronic correlation

- Main Goal: Get partonic distribution functions from hadron-hadron correlations via FUN ctional Methods

- G is the four-point quark correlation function, calculated with scattering equation.
- The quark propagator is calculated via quark DSE.
- The BSWF is calculated via the meson BSE.
(Mezrag, arXiv:1507.05824); (Diehl, Gousset, 1998); (Tiburzi, Miller, 2003);
(Mezrag, Chang, Moutarde, Roberts, Rodríguez-Quintero, Sabatié, Schmidt, 2015); (Cloët, Roberts, 2018), many many others,

$$
\mathcal{G}^{[\Gamma]}(P, k, \Delta)=\frac{1}{2} \operatorname{Tr}\left[\int d k^{-} \int \frac{d^{4} z}{2 \pi^{4}} e^{i k \cdot z}\left\langle P_{f}\right| \bar{\psi}(z) \mathcal{W} \Gamma \psi(0)\left|P_{i}\right\rangle\right]
$$

- Partonic distributions are calculated by integrating the correlator in k^{-}and taking appropriate traces.

Triangle Diagram

- We start by solving a simple model, and gradually build up the complexity of the calculation.
- Hadrons are on-shell: $P^{2}=-M^{2}$

Triangle Diagram

- We start by solving a simple model, and gradually build up the complexity of the calculation.
- Hadrons are on-shell: $P^{2}=-M^{2}$
- Forward limit: $\Delta \rightarrow 0 \Longrightarrow t \rightarrow 0$ - We get the PDFs and TMDs

Triangle Diagram

- We start by solving a simple model, and gradually build up the complexity of the calculation.
- Hadrons are on-shell: $P^{2}=-M^{2}$
- Forward limit: $\Delta \rightarrow 0 \Longrightarrow t \rightarrow 0$ - We get the PDFs and TMDs
- Using tree-level propagators S
- The amplitudes Γ are calculated with the BSE
- Two diagrams:
- Upper line spectating
- Lower line spectating \quad
- TMD obtained by projecting to the light-front (integration on k^{-})
Definition of the TMD

$$
\operatorname{TMD}(R, x) \propto-2 i \sqrt{R} \int_{-\infty}^{\infty} d \omega \mathcal{G}(R, \omega, t, x)
$$

2 TMDs and PDFs

3 Four-point function

Scalar toy model

- Scalar model:
- ϕ of mass m
- χ of mass μ
- BS amplitude for bound-state of two ϕ :

- Tree-level propagators
- Single χ exchange kernel
- The BSWF is a function of the kinematic invariants:

$$
-M^{2}=P^{2} \quad \frac{k^{2}}{M^{2}}=R \quad Z=\hat{k} \cdot \hat{P}
$$

$$
\begin{aligned}
& \psi(R, Z, x)=\frac{M^{4}}{(2 \pi)^{3}} \frac{1}{2} \int_{0}^{\infty} d R^{\prime} R^{\prime} \\
& \quad \times \int_{-1}^{1} d Z^{\prime} \sqrt{1-Z^{\prime 2}} \mathbf{G}_{\mathbf{0}}\left(R^{\prime}, Z^{\prime}, x\right) \\
& \quad \times \int_{-1}^{1} d y \mathbf{K}\left(R, Z, R^{\prime}, Z^{\prime}, y\right) \psi\left(R^{\prime}, Z^{\prime}, x\right)
\end{aligned}
$$

- Model parameters:

$$
c=\frac{g^{2}}{16 \pi^{2} m^{2}}
$$

$$
\beta=\frac{\mu}{m}
$$

$$
\gamma=\frac{m}{M}
$$

Light-front Projection

- The TMD is defined as:

- In our kinematic variables:

$$
k^{-}=-2 i M \sqrt{R} Z-\frac{x}{2} M^{2}
$$

x and $R=\frac{k^{2}}{M^{2}}=\frac{k^{2}}{M^{2}}$ are external variables

- Need the BSWF in $Z \in(-\infty, \infty)$.
- We use the Schlessinger method for analytic continuation:

$$
f(Z)=\frac{a_{0}+a_{1} Z+a_{2} Z^{2}+\cdots+a_{N} Z^{N}}{1+b_{1} Z+b_{1} Z^{2}+\cdots+b_{M} Z^{M}}
$$

(L. Schlessinger, 1968) (Tripolt tal, 2019) (0. Binosi, R-A. TTipolt; 2019)

- $\left\{a_{i}, b_{j}\right\}$ obtained by imposing $f\left(Z_{k}\right)=\Gamma\left(Z_{k}\right)$
- $N-M$ is fixed, can control behaviour at very large Z.

Definition of the LFWF

$$
\operatorname{TMD}(R, x) \propto-2 i \sqrt{R} \int_{-\infty}^{\infty} d Z \mathcal{G}(R, Z, x)
$$

TMD: Some results

- $\gamma=1.5, \beta=4, c=1$
- $\gamma=1, \beta=1, c=1$

■ Upper line open

- Lower line open
- Sum of both
$\gamma=1.5, \beta=4, c=1$

$\square \gamma=1, \beta=1, c=1$

- Upper line open
- Lower line open
■ Sum of both
$\square \gamma=1.5, \beta=4, c=1$

$\square=1, \beta=1, c=1$

■ Upper line open

- Sum of both

Analytic Structure $\operatorname{Re} \gamma<1$-Implementation soon!

$$
\mathbf{G}_{\mathbf{0}}=\frac{1}{\frac{k^{\prime}}{M^{2}}+\gamma^{2}} \frac{1}{\frac{\left(P-k^{\prime}\right)^{2}}{M^{2}}+\gamma^{2}}
$$

$$
\mathbf{K}=\frac{16 \pi^{2} \gamma^{2} c}{\frac{\left(k-k^{\prime}\right)^{2}}{M^{2}}+\beta^{2} \gamma^{2}}
$$

- Branch cuts in complex R^{\prime} plane:
- Branch cuts depend on path taken in R :

$$
\sqrt{R_{ \pm}^{\prime}}=\left\{\begin{array}{c}
-i x \\
i(1-x)
\end{array}\right\}\left[Z^{\prime}+i \lambda \sqrt{1-Z^{\prime 2}+\frac{\gamma^{2}}{\left\{x^{2} ;(1-x)^{2}\right\}}}\right]
$$

$$
\sqrt{R^{\prime}}=\sqrt{R}\left(\Omega \pm i \sqrt{1-\Omega^{2}+\frac{\beta^{2} \gamma^{2}}{R}}\right)
$$

${ }^{1}$ Triangle diagram
(2) TMDs and PDFs

3. Four-point function

Quick detour: 4-point function

- 4- point function determined from scattering equation:

$$
\mathbf{G}=\mathbf{G}_{\mathbf{0}}+\mathbf{G}_{\mathbf{0}} \mathbf{T G}_{\mathbf{0}} \Longrightarrow \mathbf{T}=\mathbf{K}+\mathbf{K G}_{\mathbf{0}} \mathbf{T} \Longrightarrow \mathbf{T}=\left(\mathbb{1}-\mathbf{K G}_{\mathbf{0}}\right)^{-1} \mathbf{K}
$$

- Fully off-shell: 6 Lorentz invariants
- 3 radial: X, t, R;
- 3 angular: Y, Z, Q;

$$
\begin{aligned}
& T(t, X, R, Z, Y, Q)=K(X, R, p \cdot q) \\
& \quad+\frac{1}{2} \frac{m^{4}}{2 \pi^{4}} \int_{0}^{\infty} d x x \int_{-1}^{1} d z \sqrt{1-z^{2}} G_{0}(x, z, t) \\
& \quad \times \int_{-1}^{1} d y \int_{0}^{2 \pi} d \Psi K(X, x, k \cdot q) T(t, x, y, z, R, Q)
\end{aligned}
$$

- Same G_{0} and K as in the BSE
- Solved numerically as linear system
- Contains all dynamics of 2ϕ particles
- Must produce bound state poles dynamically!

4-point function results

- T is made fully on-shell
- Partial-wave expansion shows bound-state pole in the first Riemann sheet

- Describes both long-range and short-range $q q$ dynamics.

Including the four-point function

- Close the triangle.

LF projection is now done in the open legs of T.

Including the four-point function

- Close the triangle.
- LF projection is now done in the open legs of T.
- Need a light-front vertex.
- Triangle is now a loop diagram
- Contains all dynamics between the two open legs:
- Infinite ladder of χ exchanges.

- Can be calculated from the scattering equation.

Equation for the vertex

- Do the light-front projection in the scattering equation

Scattering equation

$$
\mathbf{T}(q, k)=\mathbf{K}(q, k)+\int d^{4} l \mathbf{K}(q, l) \mathbf{G}_{\mathbf{0}}(l) \mathbf{T}(l, k)
$$

Equation for the vertex

- Do the light-front projection in the scattering equation

- Introduce the definition for Λ in the equation.

Definition of the vertex

Equation for the vertex

- Do the light-front projection in the scattering equation

- LF projection happens in inhomogeneous term

Vertex equation

$$
\boldsymbol{\Lambda}(q, R, x)=\int d k^{-} \mathbf{K}(q, k) \mathbf{G}_{\mathbf{0}}(k)+\int d^{4} l \mathbf{K}(q, l) \mathbf{G}_{\mathbf{0}}(l) \boldsymbol{\Lambda}(l, R, x)
$$

- Kernel and G_{0} fully known - no extrapolation needed!

TMDs/PDFs with vertex Pre

- $\gamma=2, \beta=2, c=1$

- No difference between upper leg or lower leg spectating
- Small correction
- Analytic result \rightarrow divergence as $x \rightarrow 0$.

TMDs/PDFs with vertex Pre

- $\gamma=2, \beta=2, c=1$

- No difference between upper leg or lower leg spectating
- Small correction
- Analytic result \rightarrow divergence as $x \rightarrow 0$.

Conclusions and Outlook

- Method is fast and simple.

Good results for TMDs and PDFs. Ready for application in QCD.

- No Mellin moments or Nakanishi representation.

Future Implementing contour deformations for entire range in γ - resonances.
Future $\Delta \neq 0$ - GPDs. T contribution can be very relevant due to bound-state contributions.
Future Article in preparation
Future QCD.

