Extending and Refining the Mass Surface around 208Pb

High-Precision Penning-Trap Mass Spectrometry with ISOLTRAP

Susanne Kreim
February 2nd 2011

Overview
Technical Possibilities
Physics Aims
Physics Interest

- Octupole deformation
- R-process → nucleosynthesis path
- α-decay chains

- Z = 82
- N = 112
- N = 126

- Mid-shell behavior → shape coexistence
 → octupole correlations
 → isomerism

- Robustness of shell closure → residual interaction
 → shell gap
Current Performance of ISOLTRAP

- Accuracy $\approx 1 \cdot 10^{-8}$ achievable via frequency measurement to extract wanted mass
- Half-life ≈ 60ms
- Production yield ≈ 100 ions per second
- Efficiency $\approx 1\%$
- Resolving power for isobar separation $\approx 10^5$
- Contamination ratio $\approx 10^4:1$ plus $\approx 10^3:1$
- Resolving power for isomer separation $\approx 10^7$
- Time-of-flight detection via “Ramsey method”

Installed 2010
Technical Achievements

- **N-rich Au**: newly developed RILIS scheme available
 - Suppression of Hg and Pb achievable

- **Hg and Pb isotopes**:
 - Tl and Fr suppressed by quartz transfer line due to further development
 - For n-deficient Hg and Pb current state-of-the-art targets sufficient

- **At isotopes**: RILIS ionization scheme successfully tested in 2010
 - Fr contamination for $A \geq 203$ removable by ISOLDE
 - Required resolving power and contamination ratio of Fr, Ra and Tl (n-deficient) lie well within the demonstrated capability of the MR-ToF mass separator

- **Fr isotopes**:
 - Separation of isobars possible due to improvement in selectivity at ISOLTRAP
Beam Time Requests

<table>
<thead>
<tr>
<th>Nuclei</th>
<th>Shifts</th>
<th>Target</th>
<th>Ion Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>185m,190m Au</td>
<td>8</td>
<td>UCx</td>
<td>RILIS or hot plasma</td>
</tr>
<tr>
<td>202,204,205 Au</td>
<td>10</td>
<td>UCx</td>
<td>RILIS</td>
</tr>
<tr>
<td>183m Hg</td>
<td>2</td>
<td>Molten Pb</td>
<td>VADIS</td>
</tr>
<tr>
<td>185m,189m Pb</td>
<td>4</td>
<td>UCx</td>
<td>RILIS</td>
</tr>
<tr>
<td>194m,196,197,198,202,220-223 At</td>
<td>26</td>
<td>UCx</td>
<td>RILIS</td>
</tr>
<tr>
<td>200,201,202,206,226-234 Fr</td>
<td>26</td>
<td>UCx</td>
<td>RILIS</td>
</tr>
</tbody>
</table>

- Half-lives between 50ms and 10m
 - 5 cases not known or extrapolated
- Mass uncertainty between 30 and 400keV
 - 40% extrapolated or not known
- Yield between 10^0 and 10^9 ions/µC
 - measured and extrapolated, already demonstrated at ISOLTRAP
- MR-ToF mass separator calibration 0.3 shifts per A → 9 additional shifts
Nuclear Structure

- Evolution of shell strength -- Au, Hg
 - Test mean field approaches
 - Going beyond the mean field
 - Input for shell model calculations

- Mid-shell behavior -- At, Fr
 - Study isotopic chains to look for transitional regions
 - Onset of deformation accessible due to smaller uncertainties
 - Higher-order nucleon interaction
 - Adjustment of mass models, e.g. HFB-13

skreim@cern.ch
R-Process and Deformation

- **r-process -- At, Fr**
 - Modeling of nucleosynthesis path
 - Consolidate nucleosynthesis path with additional data

- **Octupole Deformation -- At, Fr**
 - Shape parametrization within FRDM
 - Map evolution of changes in energy
Isomerism

- Isomerism -- Au, Hg, Pb, At, Fr
 - Low-lying isomeric states paired with shape coexistence or transformations
 - shape coexistence in 186Pb
 - shape staggering of Hg isotopes
 - Unambiguous identification with ISOLTRAP as input for spectroscopy experiments
 - States can be resolved with Penning-trap mass spectrometry using the time-of-flight detection technique

![Graph showing time of flight vs frequency for 194Tl isomer and ground state](image-url)
Priorities

- **2011 high priority (unknown or extrapolated masses / half-lives)**
 - r-process / octupole deformation
 - $^{226-228}$Fr, $^{231-234}$Fr, $^{221-223}$At
 - 21 shifts + 3 shifts
 - Shell strength
 - $^{202, 204, 205}$Au
 - 10 shifts + 1 shift

- **2011/2012 medium-high priority**
 - Shell strength
 - $^{207, 209, 210}$Hg
 - 0 shifts
 - Study of Isomerism
 - $^{185m, 190m}$Au, 183mHg, $^{185m, 190m}$Pb, 198mAt, $^{200m, 202m}$Fr
 - 18 shifts + 3 shifts

- **2012 medium priority**
 - Mid-shell behavior
 - At and Fr isotopes
 - 27 shifts + 3 shifts
The ISOLTRAP Collaboration

Thank you!

Missing: S. Eliseev, S. George, A. Herlert, S. Naimi, D. Neidherr, S. Schwarz
Future Developments

- N-deficient Au:
 - RILIS or hot plasma ion source because of higher yields
 - Target and ion source development (TISD) in cooperation with ISOLTRAP needed

- Hg and Pb isotopes:
 - Couple technical development of beam extraction to physics of this proposal
 - Outcome of Au measurements to be used towards ThO target development

- At isotopes: RILIS ionization scheme successfully tested in 2010
 - ISOLTRAP used as monitoring tool for TISD regarding yield enhancement

- Fr isotopes:
 - Yield of Ra contamination not higher than Fr
 - Separation possible due to improvement in selectivity at ISOLTRAP
Achievements and Aims

Not shown:
- Rn isotopes
- Tl isotopes (IS 463)
- Po isotopes (INTC-P-293)

Status 2002:
- Accuracy 1·10^{-7}
- Resolving power 3.7·10^6

N=126

Z=82

Fr
At
Bi
Tl
Au

N=112

N=126
Auxiliary Isobaric Purification

- Mass resolving power of MR-ToF mass separator of about $R=200,000$
- Bradbury-Nielsen beam gate used to select the wanted species
- α-decay chains -- Pb, At, Fr
 - Small uncertainty of Q_α-value