Beam induced power in muon RCS RF systems

F. Batsch, I. Karpov, H. Damerau

HEMAC meeting #14 19/1/2023

HOM power for the TESLA cavity:

- Bunch population 2.54x10¹², $T_{rev} = 20 \ \mu s \rightarrow I = 20.4 \ mA$
- Short-range induced voltage U_{ind} = 1.1 MV
- \rightarrow Rough limit estimate per cavity: P = 20.4 mA x 1.1 MV = 22.4 kW

→ Calculate power loss through loss factor $k_{||}$ for each simulation step / RF station: $k_{||} = \int \lambda(t) W_{||}(t) dt$

$$m{P}=m{k}_{||}*rac{Q^2}{T_B}$$
 with bunch charge $m{Q}$ and bunch spacing $m{T}_{\sf B}$ = $m{T}_{\sf rev}$

The geometry of the cavity defines all HOM, i.e. for single-bunch cases, the short-range wakefield from K.Bane includes the HOM power losses

As a check, the approximation for short Gaussian bunches gives

 $k_{||} = |rac{R}{Q}|rac{\omega_r}{2}$ ($rac{\omega_r}{4}$ for Linac norm)

Beam-induced power in RCS1:

- Used parameters: RCS1, 48 RF stations, 696 cavities, 90% survival, bunch length 0.1 ns
- The loss factor reaches $k_{||} = \int \lambda(t) W_{||}(t) dt = -2.11 \text{ V/pC}$

-0.5

-1.0

-1.5

-2.0

200 300

100

400

- The power loss per cavity reaches 10.4 kW!
- Consistent with upper limit of 22.4 kW
- and the loss using $k_{||} = \left|\frac{R}{\rho}\right| \frac{\omega_r}{2} \rightarrow P = 10.0 \text{ kW}$

(comment: this used the fundamental mode, but since short-range and fund. mode induce the same voltage, this is ok for comparison)

Beam-induced power in the other RCSs:

RCS2, 48 RF stations:

RCS3, 48 RF stations:

13.8 13.6 P_{HOM} (kW) 13.4 13.2 13.0 0.0 0.2 0.4 0.6 0.8 1.0 t (ms) 8.0 7.8 P_{HOM} (kW) 7.6 7.4 7.2 0.5 1.5 1.0 2.0 0.0 t (ms)

Larger power loss due to shorter bunches:

Larger ring gives smaller average power

Comparison with ILC:

• From Heiko's presentation:

	ILC	RCS1
Number of bunches, $n_{\rm b}$	1312	1 each μ^+ and μ^-
Bunch length σ_z	300 µm	0.1 ns to 0.02 ns (5 mm)
Bunch spacing, τ_{bs}	554 ns	$T_{\rm rev} = 20 \ \mu s$
Bunch intensity, N _b	2 · 10 ¹⁰ p/b	2.5 · 10 ¹² p/b
Average beam current, I _b	5.8 mA	2 × ~20 mA

A rough estimate of the short-range power loss per cavity gives:

Field		Result
Accelerating mode	Depend on Q of HOM coupler	Eq. (2)
Short range longitudinal	From parameters in	~ 400 W/cavity
wake	TESLA-TDR	
Long range longitudinal	Depend on parameters of	Eq. (7)
wake	modes	
Dipole and higher mode	Depend on beam - cavity offset	Negligible
		[K. Kubo , Link]

More under cavities under [link, p.78]

Type /No. of cavities				P _{beam} /cavity [kW]	P _{HOM} /cavity [kW]	
KEK-B 0.5 GHz	x 8	Single-cell with max I _{beam}	I _{beam} = 1.34 A 1389 bunches cw	350	16	
HERA 0.5 GHz	x 16	Multi-cell with max I _{beam}	I _{beam} ≤40 mA 180 bunches cw	60	0.13	
TTF-I , 1.3 GHz	x 1	Multi-cell with max E _{acc}	E _{acc} = 35 MV/m 1.3ms/pulse 1Hz PRF	~100 Almost no beam loading	0	ER

Summary / Discussion:

- The induced power is very large, above 10 kW for RCS 1&2 per bunch -> bunch crossings?
- HOM power capability limit is 3-4 kW
- Without other adjustments, the wakefields scale with a^2 , a the iris radius
- \rightarrow A factor of 2.5 in power corresponds to $\sqrt{2.5}$ in iris radius or frequency
- \rightarrow 1.3 GHz / $\sqrt{2.5}$ = 822 MHz ?
- \rightarrow BUT: The JLAB cryomodule (750 MHz) HOM power capability is estimated to be 20kW per cavity [ref], with 5 HOM waveguide absorbers per cavity: [R.Rimmer]
- \rightarrow Need definition of maximal acceptable power level to keep 1.3 GHz or switch to lower frequency

waveguide fundamental power coupler.

Figure 3: Five cell cavity with waveguide end groups.

Summary / Discussion:

Concepts with up to 4 kW and 1.5 GHz presented: see [F.Marhauser2009, PERLE coll. Meeting 2022]

What would look different with 802 MHz cavities?

• Some parameter that change with the FCC-ee 5-cell cavity:

	TESLA/ILC	FCC-
Frequency f _{RF} [MHz]	1300	801.58
Cells	9	5
Active length L _{active} [mm]	1038	935
Cavity length L _{cav} [mm]	1276	1291
Gradient [MV/m]	30 (conservative)	25
Number of cavities RCS1	696	835
Straight length RCS 1	2334	2334
Straight length with RF	38 %	46 %

