HPS and Ultra Fast Time-of-Flight (Forward) Detectors for CMS

K. Piotrzkowski, UCLouvain

Forward proton timing at LHC

GasToF & QUARTIC **detectors**

TDC needs

Meeting on new HPTDC CERN

New forward detectors

Brief history:

May'05: R&D proposal acknowledged by LHCC

June'08: FP420 Report

Fall'08: First proposals to CMS/ATLAS

In 2009: Adding detectors @220/240 m

: Central Exclusive Production (CEP): $pp \rightarrow p + H + p$

The FP420 R&D Project: Higgs and New Physics with forward protons at the LHC

M. G. Albrow¹, R. B. Appleby², M. Arneodo³, G. Atoian⁴, I.L. Azhgirey⁵, R. Barlow², I.S. Bayshev⁵, W. Beaumont⁶, L. Bonnet⁷, A. Brandt⁸, P. Bussey⁹, C. Buttar⁹, J. M. Butterworth¹⁰, M. Carter¹¹, B.E. Cox^{2,+}, D. Dattola¹², C. Da Via¹³, J. de Favereau⁷, D. d'Enterria¹⁴, P. De Remigis¹², A. De Roeck^{14,6,+}, E.A. De Wolf⁶, P. Duarte^{8,†}, J. R. Ellis¹⁴, B. Florins⁷, J. R. Forshaw¹³, J. Freestone¹³, K. Goulianos¹⁵, J. Gronberg¹⁶, M. Grothe¹⁷, J. F. Gunion¹⁸, J. Hasi¹³, S. Heinemeyer¹⁹, J. J. Hollar¹⁶, S. Houston⁹, V. Issakov⁴, R. M. Jones², M. Kelly¹³, C. Kenney²⁰, V.A. Khoze²¹, S. Kolva¹³, N. Konstantinidis¹⁰, H. Kowalski²², H.E. Larsen²³, V. Lemaitre⁷, S.-L. Liu²⁴, A. Lyapine¹⁰, F.K. Loebinger¹³, R. Marshall¹³, A. D. Martin²¹, J. Monk¹⁰, I. Nasteva¹³, P. Nemegeer⁷, M. M. Obertino³, R. Orava²⁵, V. O'Shea⁹, S. Ovyn⁷, A. Pal⁸, S. Parker²⁰, J. Pater¹³, A.-L. Perrot²⁶, T. Pierzchala⁷, A. D. Pilkington¹³, J. Pinfold²⁴, K. Piotrzkowski⁷, W. Plano¹³, A. Poblaguev⁴, V. Popov²⁷, K. M. Potter², S. Rescia²⁸, F. Roncarolo², A. Rostovtsev²⁷, X. Rouby⁷, M. Ruspa³, M.G. Ryskin²¹, A. Santoro²⁹, N. Schul⁷, G. Sellers², A. Solano²³, S. Spivey⁸, W.J. Stirling²¹, D. Swoboda²⁶, M. Tasevsky³⁰, R. Thompson¹³, T. Tsang²⁸, P. Van Mechelen⁶, A. Vilela Pereira²³, S.J. Watts¹³, M. R. M. Warren¹⁰, G. Weiglein²¹, T. Wengler¹³, S.N. White²⁸, B. Winter¹¹, Y. Yao²⁴, D. Zaborov²⁷, A. Zampieri¹², M. Zeller⁴, A. Zhokin^{6,27}

FP420 R&D Collaboration

JINST 4 (2009) T10001

High Precision Spectrometers: Motivation (1000 Tm bending power $\rightarrow \delta p/p^{2.10^{-4}}$)

Light Higgs boson case is compelling more than ever – exclusive production provides unique information:

- Higgs quantum numbers (spin-parity filter)
- Direct & precise H mass measurement (event-by-event); M_{H} resolution of $\approx 2 \text{ GeV} \rightarrow \text{direct limits on Higgs width}$
- Possibility of detecting H \rightarrow bb mode

Detection of SM Higgs boson requires (very) <u>large</u> luminosity ($\sigma_{obs} \approx 0.1-0.2 \text{ fb}$) and challenging timing detectors to keep backgrounds low (S/B \approx 1:2); in case of BSM physics HPS could provide <u>discovery</u> channels for Higgs bosons

In addition, HPS offers access to 'guaranteed' and unique studies like electroweak physics in two-photon interactions, or new QCD phenomena in exclusive production, for example.

Taken on 14/1/2009

CMS

~240m from IP5

Acceptance: 0.02 < ξ < 0.1 Test installation in 2012/13?

Q6

.........

Quench resistors

To alcove

Moving Hamburg pipe concept

Successfully used at HERA: Robust and simple design, + easy access to detectors

Motorization and movement control to be cloned from LHC collimator design

JINST 4 (2009) T10001

CERN TDC Meeting - K. Piotrzkowski

Picosecond ToF detectors @ LHC

At <u>nominal</u> luminosity event rate so high @ HPS that accidental overlays (= triple coincidence of an interesting event in central detector + two protons from single diffraction) become major background!

Use very fast ToF detectors to reduce it by matching *z*-vertex from central tracking with *z*-by-timing from proton arrival time difference: LHC vertex spread is ~50 mm \rightarrow to reduce significantly backgrounds one needs < 10ps time resolution (\rightarrow 2 mm *z*-vertex resolution)!

Proposed fast (& small ~10 cm²) timing detectors: Čerenkov radiators + fastest MCP-PMTs

Challenging environment \rightarrow pushing MCP-PMT performances to limits:

- \rightarrow High event rates, up to several MHz
- \rightarrow Running MCP-PMTs close to maximal anode currents
- \rightarrow Large annual total collected anode charges (up to 10 C/cm²)

GasToF: Gas (C_4F_{10}) Čerenkov detector with very fast light pulse (< 1 ps!) \rightarrow resolution limited by TTS of MCP-PMTs and electronics

Quartic: Quartz based Čerenkov with fine segmentation – multi-hit capability

QUARTIC Concept

Edgeless design: QUARTIC = QUARtz TIming Cherenkov

Principle of QUARTIC: Cherenkov light in quartz at $\theta \sim 48^{\circ}$ Incline Q-bars at 48° & normal to PMT Light from all bars arrives simultaneously at PMT window Can have bars to individual pads (Photonis), or single anode (Photek) Cross-talk, sharing does not matter. Can be "edgeless" (thin foil)

QUARTIC Test beam

<u>Double Q-bar</u>

Quartz (fused silica) bars 6mm x 6mm x 90mm \rightarrow PHOTEK 210 Mounted at Cherenkov angle $\theta c \sim 48$ deg. on opposite sides. dz = 6 mm/sin(48) = 8.1 mm. Some light direct to PMT, ~1/2 TIR to PMT Black "sock" over bars just to avoid light sharing

Unfold: σ(A) = 22.3 ps σ(B) = 30.5 ps

Includes electronics (~3 ps) and 2 mm beam width smear (A,B) $\Delta t = 2 \text{ mm x} (10 \text{ ps}/2 \text{ mm})$

$$\sigma_A \approx \sqrt{22.3^2 - 3^2 - 10^2} = 19.7 \text{ ps}$$

 $\sigma_B \approx \sqrt{30.5^2 - 3^2 - 10^2} = 28.7 \text{ ps}$

Combining [AB] removes beam spread (later, tracking)

Mike Albrow

14

PiLas laser test setup runs up to 1 MHz repetition rate at 408 nm and using 8 GHz BW Agilent scope with 40 GSa/s

J. Liao

GasToF at CERN test beam

- Two (short) GasToF prototypes with HPK tubes and readout by 40 GSa/s scope
- Offline analysis: threshold discrimination and simple time-walk correction
- Measured time differences show < 10 ps time resolution per detector

Fast Constant Fraction Discriminator

Development of LCFD

- 12 channel NIM units
- mini-module approach tuned to PMT rise time (HPK/Photek vs Photonis)
- Good performance:
 < 10 ps resolution for 4
 or more phe's (A. Brandt)

L. Bonnet (UCLouvain)

QUARTIC Electronics – the HPTDC

212 ps resolution obtained with pulser
Successfully tested at UTA laser test stand with laser /10 μm tube/ZX60 amp/CFD - 13.7ps resolution obtained with CFD
20 ps resolution obtained with real pulses at test beam

HPS: status and plans

HPS is part of the CMS R&D program

- In 18 months we will finalize developments for Stage One HPS:
 - Finalize QUARTIC and GasToF detector prototyping;
 - Development of ps precision clock distribution system (J. Gronberg + SLAC)
 - Design TDC cards based on present 25 ps HPTDC chips
- In 2013 (assuming approval by CMS) will install Stage One HPS detectors ('proof-of-principle' experiment)
- Continue R&D on <u>multi-anode MCP-PMTs</u> and fast electronics in preparation for the final HPS system installation (in 2018?)

HPS: need for new HPTDC

• Even for Stage One (with the goal of at least 20 ps overall resolution per detector) performance of the HPS timing system is compromised by electronics – in particular HPTDC is not well suited for GasToF...

• For final HPS <u>at least</u> 10 ps resolution is aimed for – each improvement of resolution directly reduces background (rising with luminosity²...)

 HPS wish-list/ultimate conditions: TDC chip with ~ 5 ps bin/resolution ~ 1K channels double threshold useful up to 1 MHz hit rate/channel ~ 100 KHz trigger rate ~ 100 ns trigger window ~ 3.2 μs trigger latency SEU protection (at least) for controls NINO?