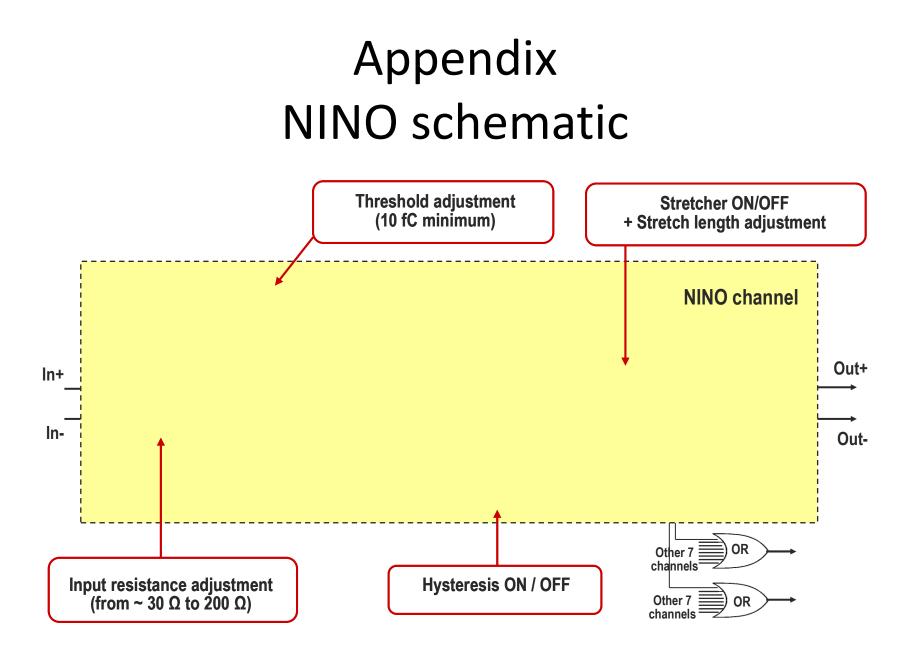
NINO development


P. Jarron 14/02/2011

Status

- NINO status
 - Used successfully connected to HPTDC in ALICE TOF
 - Jitter limit
 - 2-3 ps rms (Crispin)
 - Used for PET TOF (Endotofpet-us EU project) with 220 ps
 FWHM coincidence
 - with SiPM coupled to LSO crystal, 70 ps rms limited by Poisson statistics, so far the best results
 - a version 32 channel has been developed
 - A prototype in 130 nm has been developed

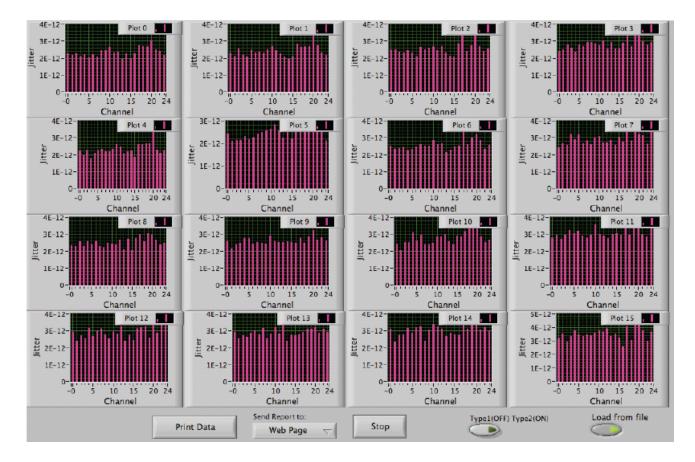
Interest for a new development

- Arguments to continue the development of NINO
 - So far it is the best amplifier-discriminator optimized for low jitter and low threshold
 - Is ESE is interested to keep this technology alive?
 - With a new HPTDC in 130 nm (90 nm) to be developed a front end interfacing a detector is essential.
 - Why?
 - Because an integrated ASIC has many advantages
 - Simplification of the readout system, lower cost, lower power
 - It has been verified (Crispin) that the physical connection between NINO and HPTDC increases the jitter,
 - not an issue for 30 ps time resolution
 - But critical for 10 ps time resolution
- Design effort estimate
 - One year of prototype development and design
 - ½ year of characterization
 - ½ year of contingency, resubmission
 - Plus time of design for integration with HPTDC

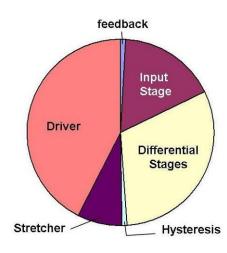
Time jitter limit from Crispin NINO 25

- 4 different values of injected charge and 4 different values of threshold
- Typical jitter between 2 and 3 ps With LeCroy oscilloscope
 - Input signal is 25-100 fC, for lower signal jitter dominated by electronic noise

Jitter of single channel:

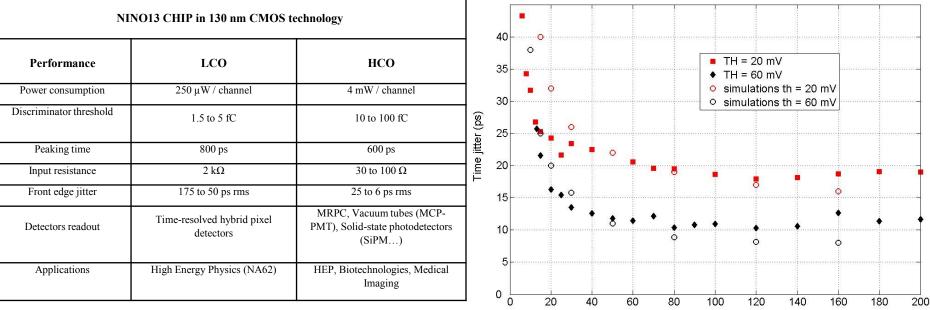

Front-end card not connected to anything

7 ps


Front end card plugged into interface card

14 ps

Front end cards plugged into interface card that is connected to mrpc strip 21 ps



Power

	Input stage	Feedback	Differential stage	Hysteresis	Stretcher	Driver
Channel Rin = 50Ω	1 mA × 2 <u>2 mA</u>	<u>100 μA</u>	920 μA × 4 <u>3.68 mA</u>	<u>92 µА</u>	<u>Off: 920 µA</u> <u>On: 950 µA</u>	<u>5 mA</u>
Channel Rin = 30Ω	1.8 mA× 2 <u>3.6 mA</u>	<u>100 μA</u>	920 μA × 4 <u>3.68 mA</u>	<u>92 µА</u>	<u>Off: 920 µA</u> <u>On: 950 µA</u>	<u>5 mA</u>
Bias Cell Rin = 30Ω Rin = 50Ω	N1/N2/N3/P1 <u>2 mA</u> <u>3.6 mA</u>	Ν4/Ρ2 <u>140 μΑ</u> <u>140 μΑ</u>	Ν5 <u>910 μΑ</u> <u>910 μΑ</u>	Ν7 <u>230 μΑ</u> <u>230 μΑ</u>	Ν8 <u>230 μΑ</u> <u>230 μΑ</u>	N6 <u>5 mA</u> <u>5 mA</u>

NINO 130 nm proto not yet fully optimized

Input charge (fC)