QCD Evolution Workshop 2023

single-hadron TMD*) fragmentation functions

*) TMD ... transverse-momentum dependent

single-hadron TMD*) fragmentation functions

*) TMD ... transverse-momentum dependent

single-hadron TMD*) fragmentation functions

*) TMD ... transverse-momentum dependent

FF ... fragmentation function

single-hadron TMD*) fragmentation functions

*) TMD ... transverse-momentum dependent

FF ... fragmentation function

single-hadron TMD*) fragmentation functions

*) TMD ... transverse-momentum dependent

\rightarrow FFs act as quark flavor-tagger and polarimeter

FF ... fragmentation function

$e^{+} e^{-}$annihilation at Belle

- asymmetric beam-energy $e^{+} e^{-}$collider near and at $\Upsilon(4 \mathrm{~S})$ resonance $(10.58 \mathrm{GeV})$

BELLE CsI ELECTROMAGNETIC CALORIMETER

polarization effects

despite unpolarized initial state

hadron pairs: angular correlations

- angular correlations between nearly back-to-back hadrons used to tag transverse quark polarization -> Collins fragmentation functions
- RFO: one hadron as reference axis $\rightarrow \cos \left(2 \phi_{0}\right)$ modulation
- RF12: thrust (or similar) axis $\rightarrow \cos \left(\phi_{1}+\phi_{2}\right)$ modulation

- RFO and RF12: different convolutions over transverse momenta
- debatable: MC used to "correct" thrust axis to qā axis

hadron pairs: angular correlations

- challenge: large modulations even without Collins effect (e.g., in PYTHIA MC)

hadron pairs: angular correlations

- challenge: large modulations even without Collins effect (e.g., in PYTHIA MC)
- construct double ratio of normalized-yield distributions R12, e.g. unlike-/like-sign:

$$
\begin{aligned}
\frac{R_{12}^{U}}{R_{12}^{L}} & \simeq \frac{1+\left\langle\frac{\sin ^{2} \theta_{\mathrm{h}}}{1+\cos ^{2} \theta_{\mathrm{th}}}\right\rangle G^{U} \cos \left(\phi_{1}+\phi_{2}\right)}{1+\left\langle\frac{\sin ^{2} \theta_{\mathrm{h}}}{1+\cos ^{2} \theta_{\mathrm{th}}}\right\rangle G^{L} \cos \left(\phi_{1}+\phi_{2}\right)} \\
& \simeq 1+\left\langle\frac{\sin ^{2} \theta_{\mathrm{th}}}{1+\cos ^{2} \theta_{\mathrm{th}}}\right\rangle\left\{G^{U}-G^{L}\right\} \cos \left(\phi_{1}+\phi_{2}\right)
\end{aligned}
$$

- suppresses flavor-independent sources of modulations
- GU/L: specific combinations of FFs
- remaining MC asymmetries

Collins asymmetries (RFO)

- first measurement of Collins asymmetries for charged pions by Belle [PRL 96 (2006) 232002, PRD 78 (2008) 032011, PRD 86 (2012) 039905(E)]
- significant asymmetries clearly rising with z
- used for first extractions of transversity parton distribution and Collins FF

Collins asymmetries (RFO)

- first measurement of Collins asymmetries for charged pions by Belle [PRL 96 (2006) 232002, PRD 78 (2008) 032011, PRD 86 (2012) 039905(E)]
- significant asymmetries clearly rising with z
- used for first extractions of transversity parton distribution and Collins FF

Collins asymmetries - going further

- PT dependence for charged pions from BaBar \& BESIII
- typical rise with рт; turnover around 0.8 GeV

Collins asymmetries - going further

[PRD 90 (2014) 052003]

- PT dependence for charged pions from $\mathrm{BaBar} \&$ BESIII
- typical rise with $\mathrm{p}_{\text {; }}$; turnover around 0.8 GeV
- ... now also from Belle in R12 frame:

Collins asymmetries - going further

[PRD 100 (2019) 92008]

- ... as well as for neutral pion and eta

$$
\begin{aligned}
& R_{12}^{\pi^{0}}=\frac{R_{12}^{0 \pm}}{R_{12}^{L}}=\frac{\pi^{0} \pi^{+}+\pi^{0} \pi^{-}}{\pi^{+} \pi^{+}+\pi^{-} \pi^{-}} \\
& R_{12}^{\eta}=\frac{R_{12}^{\eta \pm}}{R_{12}^{L}}=\frac{\eta \pi^{+}+\eta \pi^{-}}{\pi^{+} \pi^{+}+\pi^{-} \pi^{-}}
\end{aligned}
$$

- no significant differences observed in this (z, P_{+})-binning
- again, rise with P_{+}in particular for larger z

Collins asymmetries - going further

$$
\left.\begin{array}{rl}
R_{12}^{\pi^{0}}= & \frac{R_{12}^{0 \pm}}{R_{12}^{L}} \approx 1+\cos \left(\phi_{12}\right) \frac{\sin ^{2}(\theta)}{1+\cos ^{2}(\theta)} \\
\times & \left\{\frac{5\left(H_{1}^{\perp, f a v}+H_{1}^{\perp, \text { dis }}\right) \otimes\left(H_{1}^{\perp, f a v}+H_{1}^{\perp, d i s}\right)+4 H_{1, s \rightarrow \pi}^{\perp, \text { dis }} \otimes H_{1, s \rightarrow \pi}^{\perp, \text { dis }}}{\left.5\left(D_{1}^{f a v}+D_{1}^{d i s}\right) \otimes\left(D_{1}^{f a v}+D_{1}^{\text {dis }}\right)+4 D_{1, s \rightarrow \pi}^{d i s} \otimes D_{1, s \rightarrow \pi}^{d i s}\right)}\right. \\
& \left.-\frac{5\left(H_{1}^{\perp, f a v} \otimes H_{1}^{\perp, d i s}+H_{1}^{\perp, d i s} \otimes H_{1}^{\perp, f a v}\right)+2 H_{1, s \rightarrow \pi}^{\perp, \text { dis }} H_{1, s \rightarrow \pi}^{\perp, \text { dis }}}{5\left(D_{1}^{\text {fav }} \otimes D_{1}^{\text {dis }}+D_{1}^{\text {dis }} \otimes D_{1}^{\text {fav }}\right)+2 D_{1, s \rightarrow \pi}^{\text {dis }} \otimes D_{1, s \rightarrow \pi}^{\text {dis }}}\right\}
\end{array}\right\} \quad \text { isospin }=A_{12}^{U L}-A_{12}^{U C}
$$

Collins asymmetries - going further

$$
\left.\begin{array}{rl}
R_{12}^{\pi^{0}}= & \frac{R_{12}^{0 \pm}}{R_{12}^{L}} \approx 1+\cos \left(\phi_{12}\right) \frac{\sin ^{2}(\theta)}{1+\cos ^{2}(\theta)} \\
\times & \left\{\frac{5\left(H_{1}^{\perp, f a v}+H_{1}^{\perp, d i s}\right) \otimes\left(H_{1}^{\perp, f a v}+H_{1}^{\perp, d i s}\right)+4 H_{1, s \rightarrow \pi}^{\perp, d i s} \otimes H_{1, s \rightarrow \pi}^{\perp, \text {,dis }}}{\left.5\left(D_{1}^{f a v}+D_{1}^{d i s}\right) \otimes\left(D_{1}^{f a v}+D_{1}^{d i s}\right)+4 D_{1, s \rightarrow \pi}^{d i s} \otimes D_{1, s \rightarrow \pi}^{d i s}\right)}\right. \\
& \left.-\frac{5\left(H_{1}^{\perp, f a v} \otimes H_{1}^{\perp, d i s}+H_{1}^{\perp, d i s} \otimes H_{1}^{\perp, f a v}\right)+2 H_{1, s \rightarrow \pi}^{\perp, d i s} H_{1, s \rightarrow \pi}^{\perp, d i s}}{5\left(D_{1}^{f a v} \otimes D_{1}^{d i s}+D_{1}^{d i s} \otimes D_{1}^{f a v}\right)+2 D_{1, s \rightarrow \pi}^{d i s} \otimes D_{1, s \rightarrow \pi}^{d i s}}\right\} .
\end{array}\right\} \stackrel{\text { isospin }}{=} A_{12}^{U L}-A_{1}^{U C}
$$

- consistency between neutral and charged pions
- typical rise with z also seen for neutral pions

Collins asymmetries - going further

$$
\left.\begin{array}{rl}
R_{12}^{\pi^{0}}= & \frac{R_{12}^{0 \pm}}{R_{12}^{L}} \approx 1+\cos \left(\phi_{12}\right) \frac{\sin ^{2}(\theta)}{1+\cos ^{2}(\theta)} \\
\times & \left\{\frac{5\left(H_{1}^{\perp, f a v}+H_{1}^{\perp, d i s}\right) \otimes\left(H_{1}^{\perp, f a v}+H_{1}^{\perp, d i s}\right)+4 H_{1, s \rightarrow \pi}^{\perp, d i s} \otimes H_{1, s \rightarrow \pi}^{\perp, \text {,dis }}}{\left.5\left(D_{1}^{f a v}+D_{1}^{d i s}\right) \otimes\left(D_{1}^{f a v}+D_{1}^{d i s}\right)+4 D_{1, s \rightarrow \pi}^{d i s} \otimes D_{1, s \rightarrow \pi}^{d i s}\right)}\right. \\
& \left.-\frac{5\left(H_{1}^{\perp, f a v} \otimes H_{1}^{\perp, d i s}+H_{1}^{\perp, d i s} \otimes H_{1}^{\perp, f a v}\right)+2 H_{1, s \rightarrow \pi}^{\perp, d i s} H_{1, s \rightarrow \pi}^{\perp, d i s}}{5\left(D_{1}^{f a v} \otimes D_{1}^{d i s}+D_{1}^{d i s} \otimes D_{1}^{f a v}\right)+2 D_{1, s \rightarrow \pi}^{d i s} \otimes D_{1, s \rightarrow \pi}^{d i s}}\right\} .
\end{array}\right\} \stackrel{\text { isospin } A_{12}^{U L}-A_{1}^{U C}}{ }
$$

- consistency between neutral and charged pions
- typical rise with z also seen for neutral pions
- ... while basically flat for eta

Collins asymmetries - going further

- qualitative changes in 2019 Belle analysis w.r.t. previous Belle analyses of Collins asymmetries:
- no correction to qā axis;
" \rightarrow rather to thrust axis, which is observable
- upper limit on opening angle imposed
- no correction for charm contribution; \rightarrow provide charm fraction

the unpolarized case - baseline for asymmetries -

hadron-pair production

- single-hadron production has low discriminating power for parton flavor
- can use $2^{\text {nd }}$ hadron in opposite hemisphere to "tag" flavor, transverse momentum, as well as polarization
- mainly sensitive to product of single-hadron FFs
- various definitions for scaling variable

- traditional z ("std"):

$$
\begin{array}{ll}
z_{i}=\frac{2 P_{i} \cdot q}{q^{2}} & (i=1,2) \\
z_{1}=\frac{2 P_{1} \cdot q}{q^{2}} & z_{2}=\frac{P_{1} \cdot P_{2}}{P_{1} \cdot q}
\end{array}
$$

- Altarelli et al. ("AEMP"): [Nucl. Phys. B160 (1979) 301]
- Mulders \& van Hulse ("MVH"): [PRD 100 (2019) 034011]

$$
z_{1}=\left(P_{1} \cdot P_{2}-\frac{M_{h 1}^{2} M_{h 2}^{2}}{P_{1} \cdot P_{2}}\right) \frac{1}{P_{2} \cdot q-M_{h 2}^{2} \frac{P_{1} \cdot q}{P_{1} \cdot P_{2}}}
$$

light-meson pair production

- systematics-dominated over entire kinematic range
- strongly asymmetric systematics
- main contribution from Monte Carlo tune dependence

z_{2}

light-meson pair production

- systematics-dominated over entire kinematic range
- clear flavor dependence
- suppression of kaons
- suppression of like-sign pairs
- more pronounced at large z (stronger flavor sensitivity)

light-meson pair production

- systematics-dominated over entire kinematic range
- clear flavor dependence
- suppression of kaons
- suppression of like-sign pairs
- more pronounced at large z (stronger flavor sensitivity)

light-meson pair production

- systematics-dominated over entire kinematic range
- clear flavor dependence
- suppression of kaons
- suppression of like-sign pairs
- more pronounced at large z (stronger flavor sensitivity)

light-meson pair production

- systematics-dominated over entire kinematic range
- clear flavor dependence
- suppression of kaons
- suppression of like-sign pairs
- more pronounced at large z (stronger flavor sensitivity)
- similar behavior for different z definitions when imposing $T>0.8$

[PRD 101 (2020) 092004]

light-meson pair production

- systematics-dominated over entire kinematic range
- clear flavor dependence
- suppression of kaons
- suppression of like-sign pairs
- more pronounced at large z (stronger flavor sensitivity)
- similar behavior for different z definitions when imposing $T>0.8$
- larger suppression (low z) for fully inclusive pairs ("any hemisphere")

[PRD 101 (2020) 092004]

single-hadron production

- very precise data for charged pions and kaons
- Belle data available up to very large $z(z<0.98)$
- included in several FF fits (e.g. DEHSS or MAPFF) [cf. talk by Emanuele on Wed.]
- Belle radiative corrections "undone" in FF fits

single-hadron production

- very precise data for charged pions and kaons
- Belle data available up to very large $z(z<0.98)$
- included in several FF fits (e.g. DEHSS or MAPFF) [cf. talk by Emanuele on Wed.]
- Belle radiative corrections "undone" in FF fits
- data available also for (anti)protons
- not (yet) included in DEHSS or MAPFF, but, e.g., in NNFF [EPJC 77 (2017) 516]
- similar z dependence as pions
- about $\sim 1 / 5$ of pion cross sections

single-hadron production

- very precise data for charged pions and kaons
- Belle data available up to very large $z(z<0.98)$
- included in several FF fits (e.g. DEHSS or MAPFF) [cf. talk by Emanuele on Wed.]
- Belle radiative corrections "undone" in FF fits
- data available also for (anti)protons
- not (yet) included in DEHSS or MAPFF, but, e.g., in NNFF [EPJC 77 (2017) 516]
- similar z dependence as pions
- about $\sim 1 / 5$ of pion cross sections
- Belle re-analysis presented in PRD 101 (2020) 092004

ISR corrections - PRD 92 (2015) 092007

- relative fractions of hadrons as a function of z originating from ISR or non-ISR events (\equiv energy loss less than 0.5\%)
- large non-ISR fraction at large z, as otherwise not kinematically reachable (remember: $z=E_{h} / 0.5 \sqrt{ }$ snominal)
- keep only fraction of the events -> strictly speaking not single-inclusive annihilation

ISR corrections - PRD 101 (2020) 092004

- non-ISR / ISR fractions based on PYTHIA switch MSTP(11)
- PYTHIA model dependence; absorbed in systematics by variation of tunes

comparison old\&new Belle single-hadron cross sections

- previous analysis

comparison old\&new Belle single-hadron cross sections

- previous analysis

- updated analysis

comparison old\&new Belle single-hadron cross sections

- updated analysis

inclusive hadrons - transverse momentum

- quasi-inclusive hadron production gives access to transverse momentum in fragmentation
- transverse momentum measured with respect to thrust axis n
- involves sum over all final-state particles in event

- event selection and hadron distributions dependent on thrust value T required
- low thrust -> more spherical

$$
T \stackrel{\max }{=} \frac{\sum_{h}\left|\mathbf{P}_{h}^{\mathrm{CMS}} \cdot \hat{\mathbf{n}}\right|}{\sum_{h}\left|\mathbf{P}_{h}^{\mathrm{CMS}}\right|}
$$

- high thrust -> highly collimated

inclusive hadrons - transverse momentum

- quasi-inclusive hadron production gives access to transverse momentum in fragmentation
- transverse momentum measured with respect to thrust axis n
- analysis performed differential in z \& $P_{h t}$, in various slices in thrust T (
- correction steps similar as for Pht-integrated cross sections

$$
T \stackrel{\max }{=} \frac{\sum_{h}\left|\mathbf{P}_{h}^{\mathrm{CMS}} \cdot \hat{\mathbf{n}}\right|}{\sum_{h}\left|\mathbf{P}_{h}^{\mathrm{CMS}}\right|}
$$

- Gaussian fits to transverse-momentum distribution provided for all hadrons in (z, T)-bins

thrust distribution: process contributions

- large contribution from BB at lower thrust
- large thrust dominated by uds and charm fragmentation (at very large T significant τ contribution for pions, not visible here)
- will concentrate mainly on $0.85<T<0.9$ bin, though others available as well

transverse-momentum distributions

- lowest T bin -> rather spherical events
- transverse momenta almost uniformly distributed in medium-z bins
- faster drop for heavier hadrons

transverse-momentum distributions

- $0.7<T<0.8$-> particles already more collimated
- transverse momenta more Gaussian distributed
- large-z region with large uncertainties

transverse-momentum distributions

- $0.8<T<0.85$
- transverse momenta mostly Gaussian distributed
- possible deviations for large-Pht tails [but also larger uncertainties]

transverse-momentum distributions

- $0.85<T<0.9$
- transverse momenta mostly Gaussian distributed; widths narrowing
- possible deviations for large-Pht tails [but also larger uncertainties]

transverse-momentum distributions

- 0.9<T<0.95

- transverse momenta mostly Gaussian distributed; widths even narrower
- possible deviations for large-Pht tails [but also larger uncertainties]

transverse-momentum distributions

- $0.95<T<1.0$
- transverse momenta mostly Gaussian distributed
- widths very narrow as particles now very collimated

transverse-momentum: Gaussian widths

- $0.85<T<0.90$
- fit Gauss to low-Pht data
- mostly well described with possible exception at high z
- deviation from Gauss at large $P_{h T}$
- clear increase of width with z for low values of z

\bullet	$\pi^{ \pm}$	$0.15<z<0.20$
HCB	$\pi^{ \pm}$	$0.25<z<0.30$
4	$\pi^{ \pm}$	$0.35<z<0.40$
\checkmark	$\pi^{ \pm}$	$0.45<z<0.50$
8888	$\pi^{ \pm}$	$0.55<z<0.60$
¢¢ロ́c)	$\pi^{ \pm}$	$0.65<z<0.70$
\triangle	$\pi^{ \pm}$	$0.75<z<0.80$

transverse-momentum: Gaussian widths

- $0.85<T<0.90$

- fit Gauss to low-Pht data
- mostly well described with possible exception at high z
- deviation from Gauss at large $P_{h T}$
- clear increase of width with z for low values of z
- Gaussian widths as function of z
- general increase with z with turnover at larger values of z for mesons
- protons with smaller width and a more linear rise with z

transverse-momentum: Gaussian widths

- $0.85<T<0.90$
- fit Gauss to low-Pht data
- mostly well described with possible exception at high z
- deviation from Gauss at large $P_{h T}$
- clear increase of width with z for low values of z

- Gaussian widths depend on z and T
- general increase with z with turnover at larger values of z
- clear decrease of widths with increase of T
- particles more and more collimated

- $e^{+} e^{-}$annihilation is powerful laboratory for hadronization studies
- in two-hadron production, observing a "back-to-back" hadron allows for tagging transverse momenta, quark flavor as well as polarization
- Collins effect allows for the study of quark-polarisation dependence of hadronization
- previous charged-pion analyses supplemented with transverse-momentum dependence and analysis of neutral-pion and eta mesons in latest Belle Collins analysis
- results for neutral \& charged pions consistent
- no significant difference between neutral pions and eta seen
- re-analysis of unpolarized fragmentation
- inclusion of alternative variable choices for two-hadron cross sections
- updated ISR correction; now consistent ISR treatment in all Belle unpolarized Xsec's
- non-trivial hadron and thrust dependent transverse momentum distributions
- clearly non-zero transverse Λ-hyperon self-polarization at Belle [not shown here; cf. talk by Marco on Monday]

