TMD factorization at next-to-leading power

Simone Rodini
In collaboration with Alexey Vladimirov

Outline

Next-to-leading power observables

Outline

Next-to-leading power observables
First level: scaling and tree-level

Outline

Next-to-leading power observables

First level: scaling and tree-level
Second level: one-loop coefficient function

Outline

Next-to-leading power observables

First level: scaling and tree-level
Second level: one-loop coefficient function

Third level: recombination and cancellation of divergences

Outline

Next-to-leading power observables

First level: scaling and tree-level
Second level: one-loop coefficient function

Third level: recombination and cancellation of divergences

Full factorization theorem @ NLP/NLO in a ready-to-use form

NLP observables: SIDIS process

$$
\ell(l)+N(P) \rightarrow \ell\left(l^{\prime}\right)+h\left(p_{h}\right)+X
$$

LP and NLP contributes to different structure functions

NLP observables: quasi-TMD on the lattice

NLP: theory

Emergence and cancellation of special rapidity divergences

NLP: theory

Emergence and cancellation of special rapidity divergences

Already @ tree-level NLP coefficient function contains real and imaginary part Imaginary part produces Qiu-Sterman-like contributions

NLP: theory

Emergence and cancellation of special rapidity divergences

Already @ tree-level NLP coefficient function contains real and imaginary part Imaginary part produces Qiu-Sterman-like contributions

$$
\lim _{x_{g} \rightarrow 0} \mathbb{C}_{\mathrm{NLP}}^{\text {bare }}=\mathbb{C}_{L P}^{\text {bare }} \quad \text { Soft-gluon theorems? }
$$

First level: scaling and tree-level

We are interested in the TMD regime: $Q^{2} \gg \boldsymbol{q}_{T}^{2}=$ fixed

$$
W^{\mu \nu}=\int \frac{d^{4} y}{(2 \pi)^{4}} e^{i(y q)}\langle P| J^{\mu, \dagger}(y)\left|p_{h}, X\right\rangle\left\langle p_{h}, X\right| J^{\nu}(0)|P\rangle
$$

First level: scaling and tree-level

We are interested in the TMD regime: $Q^{2} \gg \boldsymbol{q}_{T}^{2}=$ fixed

$$
W^{\mu \nu}=\int \frac{d^{4} y}{(2 \pi)^{4}} e^{i(y q)}\langle P| J^{\mu, \dagger}(y)\left|p_{h}, X\right\rangle\left\langle p_{h}, X\right| J^{\nu}(0)|P\rangle
$$

Functional integration + background field approach

$$
\phi(y)=\phi_{\bar{n}}(y)+\phi_{n}(y)+\psi(y)
$$

First level: scaling and tree-level

We are interested in the TMD regime: $Q^{2} \gg \boldsymbol{q}_{T}^{2}=$ fixed

$$
W^{\mu \nu}=\int \frac{d^{4} y}{(2 \pi)^{4}} e^{i(y q)}\langle P| J^{\mu, \dagger}(y)\left|p_{h}, X\right\rangle\left\langle p_{h}, X\right| J^{\nu}(0)|P\rangle
$$

Functional integration + background field approach

$$
\begin{gathered}
\phi(y)=\phi_{\bar{n}}(y)+\phi_{n}(y)+\psi(y) \\
\left\{\partial^{+}, \partial^{-}, \partial_{T}\right\} \phi_{\bar{n}} \lesssim Q\left\{1, \lambda^{2}, \lambda\right\} \phi_{\bar{n}} \quad \xi_{\bar{n}} \sim \lambda \quad \eta_{\bar{n}} \sim \lambda^{2} \quad A_{\bar{n}}^{\mu} \sim \begin{cases}1 & \text { if } \mu=+ \\
\lambda^{2} & \text { if } \mu=- \\
\lambda & \text { if } \mu=T\end{cases} \\
\left\{y^{+}, y^{-}, y_{T}\right\} \sim Q^{-1}\left\{1,1, \lambda^{-1}\right\}
\end{gathered}
$$

At tree level we can simply expand the currents

$$
\begin{aligned}
J^{\mu}\left[\bar{\psi}+\bar{q}_{\bar{n}}+\bar{q}_{n}, \ldots\right] & =\bar{q}_{\bar{n}} \gamma^{\mu} q_{n}+\bar{q}_{n} \gamma^{\mu} q_{\bar{n}} \\
& +\bar{\psi} \gamma^{\mu} \psi+\bar{q}_{\bar{n}} \gamma^{\mu} \psi+\bar{q}_{n} \gamma^{\mu} \psi+\bar{\psi} \gamma^{\mu} q_{\bar{n}}+\bar{\psi} \gamma^{\mu} q_{n} \\
& +\bar{q}_{\bar{n}} \gamma^{\mu} q_{\bar{n}}+\bar{q}_{n} \gamma^{\mu} q_{n}
\end{aligned}
$$

Vladimirov et al., JHEP 01 (2022) 110
Bacchetta et al., JHEP 02 (2007) 093

Second level: one-loop coefficient function

Exchange between the two currents is NNLP at least

$$
\begin{aligned}
J^{\mu}(y)= & P^{+} p_{h}^{-} \int d x d \tilde{x} e^{i x P^{+} y^{-}+i \tilde{x} p_{h}^{-} y^{+}} C_{1} J_{11}^{\mu}\left(x, \tilde{x}, y_{T}\right) \\
& +\left(P^{+}\right)^{2} p_{h}^{-} \int d x_{1} d x_{2} d \tilde{x} e^{i\left(x_{1}+x_{2}\right) P^{+} y^{-}+i \tilde{x} p_{h}^{-} y^{+}} C_{2}\left(x_{1,2}\right) J_{21}^{\mu}\left(x_{1,2}, \tilde{x}, y_{T}\right) \\
& +P^{+}\left(p_{h}^{-}\right)^{2} \int d x d \tilde{x}_{1} d \tilde{x}_{2} e^{i x P^{+} y^{-}+i\left(\tilde{x}_{1}+\tilde{x}_{2}\right) p_{h}^{-} y^{+}} C_{2}\left(\tilde{x}_{1,2}\right) J_{12}^{\mu}\left(x, \tilde{x}_{2,1}, y_{T}\right)
\end{aligned}
$$

$$
\begin{aligned}
J^{\mu}(y)= & P^{+} p_{h}^{-} \int d x d \tilde{x} e^{i x P^{+} y^{-}+i \tilde{x}_{h}^{-} y^{+}} C_{1} J_{11}^{\mu}\left(x, \tilde{x}, y_{T}\right) \\
& +\left(P^{+}\right)^{2} p_{h}^{-} \int d x_{1} d x_{2} d \tilde{x} e^{i\left(x_{1}+x_{2}\right) P^{+} y^{-}+i \tilde{x} p_{h}^{-} y^{+}} C_{2}\left(x_{1,2}\right) J_{21}^{\mu}\left(x_{1,2}, \tilde{x}, y_{T}\right) \\
& +P^{+}\left(p_{h}^{-}\right)^{2} \int d x d \tilde{x}_{1} d \tilde{x}_{2} e^{i x P^{+} y^{-}+i\left(\tilde{x}_{1}+\tilde{x}_{2}\right) p_{h}^{-} y^{+}} C_{2}\left(\tilde{x}_{1,2}\right) J_{12}^{\mu}\left(x, \tilde{x}_{2,1}, y_{T}\right) \\
J_{21}\left(x_{1}, x_{2}, \tilde{x}\right)= & \left(\frac{i \bar{n}^{\mu}}{p_{h}^{-} \tilde{x}}-\frac{i n^{\mu}}{P_{+}\left(x_{1}+x_{2}\right)}\right) \frac{\bar{U}_{2 \bar{n}, \rho}\left(x_{1}, x_{2}\right) \gamma_{T}^{\rho} U_{1, n}(\tilde{x})-\bar{U}_{1 n}(\tilde{x}) \gamma_{T}^{\rho} U_{2 \bar{n}, \rho}\left(x_{2}, x_{1}\right)}{x_{2}-i 0}
\end{aligned}
$$

$$
\begin{aligned}
J^{\mu}(y)= & P^{+} p_{h}^{-} \int d x d \tilde{x} e^{i x P^{+} y^{-}+i \tilde{x} p_{h}^{-} y^{+}} C_{1} J_{11}^{\mu}\left(x, \tilde{x}, y_{T}\right) \\
& +\left(P^{+}\right)^{2} p_{h}^{-} \int d x_{1} d x_{2} d \tilde{x} e^{i\left(x_{1}+x_{2}\right) P^{+} y^{-}+i \tilde{p}_{h}^{-} y^{+}} C_{2}\left(x_{1,2}\right) J_{21}^{\mu}\left(x_{1,2}, \tilde{x}, y_{T}\right) \\
& +P^{+}\left(p_{h}^{-}\right)^{2} \int d x d \tilde{x}_{1} d \tilde{x}_{2} e^{i x P^{+} y^{-}+i\left(\tilde{x}_{1}+\tilde{x}_{2}\right) p_{h}^{-} y^{+}} C_{2}\left(\tilde{x}_{1,2}\right) J_{12}^{\mu}\left(x, \tilde{x}_{2,1}, y_{T}\right) \\
J_{21}\left(x_{1}, x_{2}, \tilde{x}\right)= & \left(\frac{i \bar{n}^{\mu}}{p_{h}^{-} \tilde{x}}-\frac{i n^{\mu}}{P_{+}\left(x_{1}+x_{2}\right)}\right) \frac{\bar{U}_{2 \bar{n}, \rho}\left(x_{1}, x_{2}\right) \gamma_{T}^{\rho} U_{1, n}(\tilde{x})-\bar{U}_{1 n}(\tilde{x}) \gamma_{T}^{\rho} U_{2 \bar{n}, \rho}\left(x_{2}, x_{1}\right)}{x_{2}-i 0} \\
C_{1}(x, \tilde{x})= & 2 a_{s} C_{F} \frac{\Gamma(\varepsilon) \Gamma(-\varepsilon) \Gamma(2-\varepsilon)}{\Gamma(3-2 \varepsilon)} \frac{2-\varepsilon+2 \varepsilon^{2}}{\left(-2 k^{+} k^{-}-i 0\right)^{\varepsilon}} \\
C_{2}\left(x_{1}, x_{2}, \tilde{x}\right)= & 2 a_{s} \frac{\Gamma(-\varepsilon) \Gamma(\varepsilon) \Gamma(1-\varepsilon)}{\Gamma(3-2 \varepsilon)} \frac{1}{\left(-2 k^{+} k^{-}-i 0\right)^{\varepsilon}}\left\{C_{F}(1-\varepsilon)^{2}(2-\varepsilon)\right. \\
& +\left(C_{F} \varepsilon^{2}(1+\varepsilon)+C_{A} \varepsilon\left(1-\varepsilon-\varepsilon^{2}\right)\right) \frac{x_{1}+x_{2}}{x_{1}}\left(1-\left(\frac{x_{1}+x_{2}-i 0}{x_{2}-i 0}\right)^{\varepsilon}\right) \\
& \left.-2\left(C_{F}-\frac{C_{A}}{2}\right)\left(1-\varepsilon-\varepsilon^{2}\right) \frac{x_{1}+x_{2}}{x_{2}}\left(1-\left(\frac{x_{1}+x_{2}-i 0}{x_{1}-i 0}\right)^{\varepsilon}\right)\right\}
\end{aligned}
$$

Third level: recombination and cancellation of divergences
Renormalize the semicompact operators

Third level: recombination and cancellation of divergences

Renormalize the semicompact operators
Take the product of the two currents

Third level: recombination and cancellation of divergences

Renormalize the semicompact operators
Take the product of the two currents
Fiertz transformation to obtain TMD operator

Third level: recombination and cancellation of divergences

Renormalize the semicompact operators
Take the product of the two currents
Fiertz transformation to obtain TMD operator
One obtains:
standard twist-(1,1) contributions
Kinematic corrections ~ derivatives of twist-(1,1)
Genuine corrections ~ quark-gluon-quark correlators

$$
\begin{aligned}
\Phi_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right) & =\int_{-\infty}^{\infty} \frac{d \lambda_{1} d \lambda_{2}}{(2 \pi)^{2}} e^{i\left(x_{1} \lambda_{1}+x_{2} \lambda_{2}\right) P^{+}}\langle P, s| \bar{U}_{\mu, 2}\left(\lambda_{1}, \lambda_{2} ; b\right) \frac{\Gamma}{2} U_{1}(0 ; 0)|P, s\rangle \\
\Phi_{\mu, 12}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right) & =\int_{-\infty}^{\infty} \frac{d \lambda_{1} d \lambda_{2}}{(2 \pi)^{2}} e^{i\left(x_{1} \lambda_{1}+x_{2} \lambda_{2}\right) P^{+}}\langle P, s| \bar{U}_{1}\left(\lambda_{1} ; b\right) \frac{\Gamma}{2} U_{\mu, 2}\left(\lambda_{2}, 0 ; 0\right)|P, s\rangle
\end{aligned}
$$

quark-gluon-quark correlators

Have simple operator definition but undefined T-parity and complexity

quark-gluon-quark correlators

$\Phi_{12,21}$
Have simple operator definition but undefined T-parity and complexity

They also have uncompensated special rapidity divergences

$$
\begin{aligned}
& \boldsymbol{\Phi}_{\mu, 12}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right)=\Phi_{\mu, 12}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right)-\left[\mathscr{R}_{12} \otimes \Phi_{11}\right]_{\mu}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right) \\
& \boldsymbol{\Phi}_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right)=\Phi_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right)-\left[\mathscr{R}_{21} \otimes \Phi_{11}\right]_{\mu}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right)
\end{aligned}
$$

quark-gluon-quark correlators

$\Phi_{12,21}$
Have simple operator definition but undefined T-parity and complexity

They also have uncompensated special rapidity divergences

$$
\begin{aligned}
& \boldsymbol{\Phi}_{\mu, 12}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right)=\Phi_{\mu, 12}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right)-\left[\mathscr{R}_{12} \otimes \Phi_{11}\right]_{\mu}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right) \\
& \boldsymbol{\Phi}_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right)=\Phi_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right)-\left[\mathscr{R}_{21} \otimes \Phi_{11}\right]_{\mu}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3}, b\right)
\end{aligned}
$$

SPDs are cancelled in between terms:
" Fragmentation functions in the n sector - TMDPDF in the nB sector"

Definite T-parity and complexity correlators

$$
\begin{gathered}
\boldsymbol{\Phi}_{\mu, \oplus}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3} ; b\right)=\frac{\boldsymbol{\Phi}_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3} ; b\right)+\mathbf{\Phi}_{\mu, 12}^{[\Gamma]}\left(-x_{3},-x_{2},-x_{1} ; b\right)}{2} \\
\boldsymbol{\Phi}_{\mu, \ominus}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3} ; b\right)=i \frac{\boldsymbol{\Phi}_{\mu, 21}^{[\Gamma]}\left(x_{1}, x_{2}, x_{3} ; b\right)-\boldsymbol{\Phi}_{\mu, 12}^{[\Gamma]}\left(-x_{3},-x_{2},-x_{1} ; b\right)}{2} \\
\Phi_{\oplus}\left(x_{1}<0, x_{2}<0, x_{3}>0, k_{T}\right) \propto \operatorname{Re}
\end{gathered}
$$

$$
0<z_{3}<1 \quad z_{1,2}<0 \quad \frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}=0
$$

Using plus/minus correlators is also important because It reveals that the cross section is real (as it must be)

Not a trivial statement @NLP, because we have complex coefficient functions

$$
\frac{C^{\dagger}\left(\hat{u}_{1}, \hat{u}_{2}\right) C_{1}}{u_{2}-i 0}=\mathbb{C}_{R}\left(x, \hat{u}_{2}\right)+i \pi \mathbb{C}_{I}\left(x, \hat{u}_{2}\right)
$$

Using plus/minus correlators is also important because It reveals that the cross section is real (as it must be)

Not a trivial statement @NLP, because we have complex coefficient functions

$$
\frac{C^{\dagger}\left(\hat{u}_{1}, \hat{u}_{2}\right) C_{1}}{u_{2}-i 0}=\mathbb{C}_{R}\left(x, \hat{u}_{2}\right)+i \pi \mathbb{C}_{I}\left(x, \hat{u}_{2}\right)
$$

For Fragmentation functions no imaginary part because the momentum fractions have fixed signs!

$$
C_{2}^{\dagger}\left(\frac{1}{\hat{w}_{1}}, \frac{1}{\hat{w}_{2}}\right) C_{1}=\frac{\mathbb{C}_{2}\left(z, \hat{w}_{2}\right)}{\hat{w}_{2}} \quad 0<z_{3}<1 \quad z_{1,2}<0 \quad \frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}=0
$$

Factorized expression for the hadronic tensor

$$
W^{\mu \nu}=\int d \tilde{x} d \tilde{z} \delta\left(\tilde{x}+\frac{q_{+}}{P_{+}}\right) \delta\left(\tilde{z}-\frac{p_{h}^{-}}{q_{-}}\right) \int \frac{d^{2} b}{(2 \pi)^{2}} e^{i\left(q_{T} b\right)} \frac{\tilde{z}}{2}\left[\widetilde{W}_{\mathrm{LP}}^{\mu \nu}+\widetilde{W}_{\mathrm{kNLP}}^{\mu \nu}+\widetilde{W}_{\mathrm{gNLP}}^{\mu \nu}\right]
$$

$$
\begin{aligned}
\widetilde{\mathscr{Q}}_{\mathrm{kNLP}}^{\mu \nu}(y)= & -i\left|C_{V}\left(\mu^{2}, Q^{2}\right)\right|^{2} \sum_{n, m}\left\{\frac{\bar{n}^{\mu} \operatorname{Tr}\left[\gamma^{\rho} \bar{\Gamma}_{m}^{+} \gamma^{\nu} \bar{\Gamma}_{n}^{-}\right]+\bar{n}^{\nu} \operatorname{Tr}\left[\gamma^{\mu} \bar{\Gamma}_{m}^{+} \gamma^{\rho} \bar{\Gamma}_{n}^{-}\right]}{q_{-}} \Phi_{11}^{\left[\Gamma_{n}^{+}\right]}\left(\frac{\partial}{\partial b^{\rho}}-\frac{\partial_{\rho} \mathscr{D}}{2} \ln \left(\frac{\zeta}{\bar{\zeta}}\right)\right) \Delta_{11}^{\left[\Gamma_{m}^{-}\right]}\right. \\
& \left.+\frac{n^{\mu} \operatorname{Tr}\left[\gamma^{\rho} \bar{\Gamma}_{m}^{+} \gamma^{\nu} \bar{\Gamma}_{n}^{-}\right]+n^{\nu} \operatorname{Tr}\left[\gamma^{\mu} \bar{\Gamma}_{m}^{+} \gamma^{\rho} \bar{\Gamma}_{n}^{-}\right]}{q_{+}} \Delta_{n 11}^{\left[\Gamma_{m}^{-}\right]}\left(\frac{\partial}{\partial b^{\rho}}+\frac{\partial_{\rho} \mathscr{D}}{2} \ln \left(\frac{\zeta}{\bar{\zeta}}\right)\right) \Phi_{\bar{n} 11}^{\left[\Gamma_{n}^{+}\right]}\right\}+ \text {antiquark }
\end{aligned}
$$

Factorized expression for the hadronic tensor

$$
W^{\mu \nu}=\int d \tilde{x} d \tilde{z} \delta\left(\tilde{x}+\frac{q_{+}}{P_{+}}\right) \delta\left(\tilde{z}-\frac{p_{h}^{-}}{q_{-}}\right) \int \frac{d^{2} b}{(2 \pi)^{2}} e^{i\left(q_{T} b\right)} \frac{\tilde{z}}{2}\left[\widetilde{W}_{\mathrm{LP}}^{\mu \nu}+\widetilde{W}_{\mathrm{kNLP}}^{\mu \nu}+\widetilde{W}_{\mathrm{gNLP}}^{\mu \nu}\right]
$$

$$
\begin{aligned}
\widetilde{\mathscr{Q}}_{\mathrm{kNLP}}^{\mu \nu}(y)= & -i\left|C_{V}\left(\mu^{2}, Q^{2}\right)\right|^{2} \sum_{n, m}\left\{\frac{\bar{n}^{\mu} \operatorname{Tr}\left[\gamma^{\rho} \bar{\Gamma}_{m}^{+} \gamma^{\nu} \bar{\Gamma}_{n}^{-}\right]+\bar{n}^{\nu} \operatorname{Tr}\left[\gamma^{\mu} \bar{\Gamma}_{m}^{+} \gamma^{\rho} \bar{\Gamma}_{n}^{-}\right]}{q_{-}} \Phi_{11}^{\left[\Gamma_{n}^{+}\right]}\left(\frac{\partial}{\partial b^{\rho}}-\frac{\partial_{\rho} \mathscr{D}}{2} \ln \left(\frac{\zeta}{\bar{\zeta}}\right)\right) \Delta_{11}^{\left[\Gamma_{m}^{-}\right]}\right. \\
& \left.+\frac{n^{\mu} \operatorname{Tr}\left[\gamma^{\rho} \bar{\Gamma}_{m}^{+} \gamma^{\nu} \bar{\Gamma}_{n}^{-}\right]+n^{\nu} \operatorname{Tr}\left[\gamma^{\mu} \bar{\Gamma}_{m}^{+} \gamma^{\rho} \bar{\Gamma}_{n}^{-}\right]}{q_{+}} \Delta_{n 11}^{\left[\Gamma_{m}^{-}\right]}\left(\frac{\partial}{\partial b^{\rho}}+\frac{\partial_{\rho} \mathscr{D}}{2} \ln \left(\frac{\zeta}{\bar{\zeta}}\right)\right) \Phi_{\bar{n} 11}^{\left[\Gamma_{n}^{+}\right]}\right\}+ \text {antiquark }
\end{aligned}
$$

Residue of the cancellation of special rapidity divergences.
Ensure boost-invariance!

$$
\begin{aligned}
& \widetilde{W}_{\mathrm{gNLP}}=i \sum_{n, m}\left\{\int[d \hat{u}] \delta\left(\tilde{x}-\hat{u}_{3}\right)[\right. \\
& T_{-}^{\mu \nu \rho}(\bar{n}, n)\left(\mathbb{C}_{R}\left(x, \hat{u}_{2}\right) \boldsymbol{\Phi}_{\rho, \oplus}^{\left[\Gamma_{n}^{+}\right]} \Delta_{11}^{\left[\Gamma_{m}^{-}\right]}+\pi \mathbb{C}_{I}\left(x, \hat{u}_{2}\right) \boldsymbol{\Phi}_{\rho, \ominus}^{\left[\Gamma_{n}^{+}\right]} \Delta_{11}^{\left[\Gamma^{-}\right]}\right) \\
& +i T_{+}^{\mu \nu \rho}(\bar{n}, n)\left(\pi \mathbb{C}_{I}\left(x, \hat{u}_{2}\right) \boldsymbol{\Phi}_{\rho, \oplus}^{\left[\Gamma_{,}^{+}\right]} \Delta_{11}^{\left[\Gamma^{-}\right]}-\mathbb{C}_{R}\left(x, \hat{u}_{2}\right) \boldsymbol{\Phi}_{\rho, \ominus}^{\left[\Gamma_{n}^{+}\right]} \Delta_{11}^{\left[\Gamma_{m}^{-}\right]}\right) \\
& +T_{-}^{\mu \nu \rho}(n, \bar{n})\left(\mathbb{C}_{R}\left(x, \hat{u}_{2}\right) \overline{\boldsymbol{\Phi}}_{\rho, \oplus}^{\left[\Gamma_{n}^{+}\right]} \bar{\Delta}_{11}^{\left[\Gamma^{-}\right]}+\pi \mathbb{C}_{I}\left(x, \hat{u}_{2}\right) \overline{\boldsymbol{\Phi}}_{\rho, \ominus}^{\left[\Gamma_{n}^{+}\right]} \bar{\Delta}_{11}^{\left[\Gamma_{m}^{-}\right]}\right) \\
& \left.+i T_{+}^{\mu \nu \rho}(n, \bar{n})\left(\pi \mathbb{C}_{I}\left(x, \hat{u}_{2}\right) \overline{\boldsymbol{\Phi}}_{\rho, \oplus}^{\left[\Gamma_{n}^{+}\right]} \bar{\Delta}_{11}^{\left[\Gamma_{m}^{-}\right]}-\mathbb{C}_{R}\left(x, \hat{u}_{2}\right) \bar{\Phi}_{\rho, \ominus}^{\left[\Gamma_{n}^{+}\right]} \bar{\Delta}_{11}^{\left[\Gamma_{m}^{-}\right]}\right)\right] \\
& +\int \frac{[d \hat{w}]}{\left|\hat{w}_{1}\right|} \delta\left(\tilde{z}-\hat{w}_{3}\right)[\\
& T_{-}^{\mu \nu \rho}(\bar{n}, n) \mathbb{C}_{2}\left(z, \hat{w}_{2}\right) \Phi_{11}^{\left[\Gamma_{n}^{+}\right]} \boldsymbol{\Delta}_{\rho, \oplus}^{\left[\Gamma_{m}^{-}\right]}-i T_{+}^{\mu \nu \rho}(\bar{n}, n) \mathbb{C}_{2}\left(z, \hat{w}_{2}\right) \Phi_{11}^{\left[\Gamma^{+}\right]} \boldsymbol{\Delta}_{\rho, \ominus^{[}}^{\left[\Gamma_{m}^{-}\right]} \\
& \left.\left.+T_{-}^{\mu \nu \rho}(n, \bar{n}) \mathbb{C}_{2}\left(z, \hat{w}_{2}\right) \bar{\Phi}_{11}^{\left[\Gamma_{n}^{+}\right]} \overline{\boldsymbol{\Delta}}_{\rho, \oplus}^{\left[\Gamma_{m}^{-}\right]}-i T_{+}^{\mu \nu \rho}(n, \bar{n}) \mathbb{C}_{2}\left(z, \hat{w}_{2}\right) \bar{\Phi}_{11}^{\left[\Gamma_{n}^{+}\right]} \overline{\boldsymbol{\Delta}}_{\rho, \ominus}^{\left[\Gamma_{m}^{-}\right]}\right]\right\}
\end{aligned}
$$

One example: Cahn effect $F_{U U}^{\mathrm{cos} \phi}$

$$
\begin{aligned}
& \left|C_{V}\right|^{2}\left\{\frac{\left|p_{h, \perp}\right|}{Q z} J_{0}\left[f_{1} D_{1}\right]+\frac{\left|p_{h, \perp}\right|}{Q z} J_{2}\left[M m_{h} h_{1}^{\perp} H_{1}^{\perp}\right]\right. \\
& \left.+\frac{2 M}{Q} J_{1}\left[M \dot{f}_{1} D_{1}-M f_{1} \stackrel{\circ}{D}_{1}+M \check{D} \log \frac{\zeta}{\bar{\zeta}}\right]-\frac{2 M}{Q} J_{1}\left[M^{2} m_{h} b^{2} \stackrel{h}{1}_{\perp}^{\perp} H_{1}^{\perp}-M^{2} m_{h} b^{2} h_{1}^{\perp} \stackrel{\circ}{H}_{\perp}^{\perp}+M^{2} m_{h} b^{2} \check{D} \log \frac{\zeta}{\bar{\zeta}}\right]\right\} \\
& -\mathbb{C}_{2} \frac{2 m_{h}}{Q} J_{1}\left[m_{h} f_{1}\left(F_{\oplus}^{\perp}+G_{\ominus}^{\perp}\right)+2 M H_{\ominus} h_{1}^{\perp}\right] \\
& +\mathbb{C}_{R} \frac{2 M}{Q} J_{1}\left[M D_{1}\left(f_{\ominus}^{\perp}-g_{\oplus}^{\perp}\right)+2 m_{h} h_{\ominus} H_{1}^{\perp}\right] \\
& -\mathbb{C}_{I} \frac{2 M}{Q} J_{1}\left[M D_{1}\left(f_{\oplus}^{\perp}+g_{\ominus}^{\perp}\right)+2 m_{h} h_{\oplus} H_{1}^{\perp}\right]
\end{aligned}
$$

One example: Cahn effect $F_{U U}^{\text {cos } \phi}$

$$
\begin{aligned}
& \left|C_{V}\right|^{2}\left\{\frac{\left|p_{h, \perp}\right|}{Q z} J_{0}\left[f_{1} D_{1}\right]+\frac{\left|p_{h, \perp}\right|}{Q z} J_{2}\left[M m_{h} h_{1}^{\perp} H_{1}^{\perp}\right]\right. \\
& \left.+\frac{2 M}{Q} J_{1}\left[M \circ_{1} D_{1}-M f_{1} \stackrel{\circ}{D}_{1}+M \mathscr{D} \log \frac{\zeta}{\bar{\zeta}}\right]-\frac{2 M}{Q} J_{1}\left[M^{2} m_{h} b^{2} \stackrel{\circ}{1}_{1}^{\perp} H_{1}^{\perp}-M^{2} m_{h} b^{2} h_{1}^{\perp} \stackrel{\circ}{1}_{\perp}^{\perp}+M^{2} m_{h} b^{2} \check{D} \log \frac{\zeta}{\bar{\zeta}}\right]\right\}
\end{aligned}
$$

$$
-\mathbb{C}_{2} \frac{2 m_{h}}{Q} J_{1}\left[m_{h} f_{1}\left(F_{\oplus}^{\perp}+G_{\ominus}^{\perp}\right)+2 M H_{\ominus} h_{1}^{\perp}\right]
$$

All these combinations have

$$
+\mathbb{C}_{R} \frac{2 M}{Q} J_{1}\left[M D_{1}\left(f_{\ominus}^{\perp}-g_{\oplus}^{\perp}\right)+2 m_{h} h_{\ominus} H_{1}^{\perp}\right]
$$ Tree-level matching to twist-4 PDFs

$$
\left.-\mathbb{C}_{I} \frac{2 M}{Q} J_{1}\left[M D_{1}\left(f_{\oplus}^{\perp}+g_{\ominus}^{\perp}\right)+2 m_{h} h_{\oplus} H_{1}^{\perp}\right]\right)
$$

At one loop $f_{\ominus}^{\perp}-g_{\oplus}^{\perp}$ matches to twist-2 PDF

Conclusions

Full factorization theorem @ NLP/NLO for SIDIS

Emergence and cancellation of special rapidity divergences, restoration of boost-invariance

Definite T-parity correlators as real/imaginary part of 1->2 and 2->1 partonic interference processes

One-loop results for all LP and NLP structure functions
Only NNLP structure functions: $F_{U U, L} \quad F_{U T, L}^{\sin \phi-\phi_{S}}$

