Brookhaven

National Laboratory

Generalized Parton Distributions from Lattice QCD: New Developments

Swagato Mukherjee

no introduction needed

answers to many 'big questions' - origin of proton's mass and spin - are intimately connected to its GPDs
very difficult to access full (x, ξ, t) of GPDs from ongoing and upcoming experiments
need complimentary theoretical knowledge
on (x, ξ, t) dependence from (lattice) QCD
this talk: new developments (past ~6 months)

new developments

a novel Lorentz invariant formalism for lattice QCD calculations of GPD
fast: ~ 10 times faster access to t-dependence of GPD
accurate: reduces frame-dependent power corrections

Shohini Bhattacharya (BNL) et al., Phys. Rev. D 106, 1, 114512 (2022)

Generalized Parton Distributions from Lattice QCD with Asymmetric Momentum Transfer: Unpolarized Quarks

our life before

symmetric
momenta transfer
$\mathscr{H}_{0}^{s}, \mathscr{E}_{0}^{s}$: pseudo-/quasi-GPD

+ pQCD matching

$$
F_{0}^{s}=\bar{u}\left[\gamma_{0} \mathscr{H}_{0}^{s}+\frac{i \sigma^{0 \mu} \Delta_{\mu}^{s}}{2 m} \mathscr{C}_{0}^{s}\right] u
$$

$+z^{2} \rightarrow 0, P_{z} \rightarrow \infty \quad$ light-cone GPD: H, E

- need a separate calculation for each $\Delta^{2}=-t$

- multiple t within a single calculation
o each calculation is $2 \times$ faster than symmetric frame
~ 10 time faster access to t dependence of GPD

our naive life

frame-dependent power corrections

$$
\begin{aligned}
& P_{z}=1.25 \mathrm{GeV} \\
& t=-0.67 \mathrm{GeV}^{2} \\
& \xi=0
\end{aligned}
$$

$m_{\pi}=260 \mathrm{MeV}, a=0.093 \mathrm{fm}, 32^{3} \times 64, N_{f}=2+1+1$ twisted mass fermions

putting on our thinking caps

\perp Wilson line*

$$
\begin{aligned}
& F_{0}^{s} \quad \leftarrow---=-=- \\
& z^{2} \rightarrow 0, P_{z} \rightarrow \infty: F_{0}^{s} \leftrightarrow F_{0}^{a}
\end{aligned}
$$

$$
\gamma F_{0}^{a}-\gamma \beta F_{\perp}^{a}
$$

frame-dependent power corrections

* Euclidean lattice: the operator must remain space-like ($\perp \equiv x, y$)

$$
\begin{aligned}
& \beta=-\sqrt{\frac{E_{i}^{a}-E_{f}^{a}}{E_{i}^{a}+E_{f}^{a}}}<0 \\
& \gamma=\frac{1}{\sqrt{1-\beta^{2}}}
\end{aligned}
$$

Lorentz invariant formalism

Lorentz covariant parametrization:

$$
\begin{aligned}
F^{\mu}(z, P, \Delta)=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\frac{P^{\mu}}{m} A_{1}+m z^{\mu} A_{2}+\right. & \frac{\Delta^{\mu}}{m} A_{3}+i m \sigma^{\mu z} A_{4}+\frac{i \sigma^{\mu \Delta}}{m} A_{5} \\
& \left.+\frac{P^{\mu} i \sigma^{z \Delta}}{m} A_{6}+m z^{\mu} i \sigma^{z \Delta} A_{7}+\frac{\Delta^{\mu} i \sigma^{z \Delta}}{m} A_{8}\right\rceil u\left(p_{i}, \lambda\right)
\end{aligned}
$$

8 Lorentz invariant amplitudes: $A_{i}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)$
extract A_{i} in any frame by combining F^{μ} with varying S_{i}, S_{f}, μ
from A_{i} to GPD: Lorentz invariant mapping

$$
F^{+}=\bar{u}\left[\gamma^{+} \mathscr{H}_{L I}+\frac{i \sigma^{+\mu} \Delta_{\mu}}{2 m} \mathscr{C}_{L I}\right] u
$$

$$
\begin{aligned}
& \mathscr{H}_{L I}=A_{1}+\left(\frac{\Delta \cdot z}{P \cdot z}\right) A_{3} \\
& \mathscr{E}_{L I}=-A_{1}-\left(\frac{\Delta \cdot z}{\Delta \cdot z}\right) A_{3}+2 A_{5}+2(P \cdot z) A_{6}+2(\Delta \cdot z) A_{8}
\end{aligned}
$$

$$
F^{+}=\bar{u}\left[\gamma^{+} \mathscr{H}_{L I}+\frac{i \sigma^{+\mu} \Delta_{\mu}}{2 m} \mathscr{C}_{L I}\right] u
$$

$$
\mathscr{H}_{L I}=A_{1}+\left(\frac{\Delta \cdot z}{P \cdot z}\right) A_{3}
$$

$$
\mathscr{E}_{L I}=-A_{1}-\left(\frac{\Delta \cdot z}{\Delta \cdot z}\right) A_{3}+2 A_{5}+2(P \cdot z) A_{6}+2(\Delta \cdot z) A_{8}
$$

$$
z^{2} \rightarrow 0, P_{z} \rightarrow \infty: \quad \mathscr{H}_{0}^{s / a} \rightarrow \mathscr{H}_{L I} \quad \mathscr{E}_{0}^{s / a} \rightarrow \mathscr{E}_{L I}
$$

A_{i} are frame independent

filled symbols:
symmetric frame
unfilled symbols: asymmetric frame

moments of proton GPD: t dependence

$$
\int_{-1}^{1} x^{n} H^{q}(x, \xi=0, t) d x=A_{n+1,0}^{q}(t) \quad \int_{-1}^{1} x^{n} E^{q}(x, \xi=0, t) d x=B_{n+1,0}^{q}(t)
$$

$$
\text { short-distance expansions of } \mathscr{H} \text { and } \mathscr{E} \text { in } z^{2}
$$

$$
M_{H}(z, P, \Delta)=\frac{\mathscr{H}(z, P, \Delta)}{\mathscr{H}(z, P=0, \Delta=0)}=\sum_{n=0} \frac{\left(-i z P_{z}\right)^{n}}{n!} \frac{C_{n}^{\overline{M S}}\left(\mu^{2} z^{2}\right)}{C_{0}^{\overline{\bar{S}}}\left(\mu^{2} z^{2}\right)} A_{n+1,0}(t) \quad+\mathcal{O}\left(\Lambda_{Q C D}^{2} z^{2}\right)
$$

$C_{n}^{\overline{M S}}\left(\mu^{2} z^{2}\right)$ up to NNLO + RGE
$\mu=2 \mathrm{GeV}$

Xiang Gao (ANL) et al, 2305.11117

Moments of proton GPDs from the OPE of nonlocal quark bilinears up to NNLO
Shohini Bhattacharya, ${ }^{1}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou, ${ }^{3}$ Xiang Gao, ${ }^{4, *}$ Andreas Metz, ${ }^{3}$ Joshua Miller, ${ }^{3}$ Swagato Mukherjee, ${ }^{5}$ Peter Petreczky, ${ }^{5}$ Fernanda Steffens, ${ }^{6}$ and Yong Zhao ${ }^{4}$

old vs. new

large power corrections for traditional definitions

no scaling with $z P_{z}$

not constant in z

$$
P_{z}=0.83,1.25,1.67 \mathrm{GeV}
$$

negligible power corrections, stable moments

unleashing its full power

filled symbols: real part
unfilled symbols: imaginary part

disconnected diagrams neglected

$$
P_{z}=1.25 \mathrm{GeV}
$$

good agreement with traditional lattice QCD calculations of GPD moments using local operators, when available

black squares: OPE of nonlocal quark bilinear

$$
\mu=2 \mathrm{GeV}
$$

purple circles: local operator

black squares: OPE of nonlocal quark bilinear
purple circles: local operator

we got more ...

black squares: OPE of nonlocal quark bilinear

\ldots and spatial imaging

$$
\begin{gathered}
\rho_{n+1}\left(\vec{b}_{\perp}\right)=\int \frac{d^{2} \vec{\Delta}_{\perp}}{(2 \pi)^{2}} A_{n+1,0}\left(-\vec{\Delta}_{\perp}^{2}\right) e^{-i \vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}} \\
q\left(x, \vec{b}_{\perp}\right)=\int \frac{d^{2} \vec{\Delta}_{\perp}}{(2 \pi)^{2}} H\left(x,-{\overrightarrow{\Delta_{\perp}}}_{\perp}\right) e^{-i \vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}} \\
\rho_{n+1}^{T}\left(\vec{b}_{\perp}\right)=\int \frac{d^{2} \vec{\Delta}_{\perp}}{(2 \pi)^{2}}\left[A_{n+1,0}\left(-\vec{\Delta}_{\perp}^{2}\right)+\frac{i \Delta_{y}}{2 m_{n}} B_{n+1,0}\left(-\vec{\Delta}_{\perp}^{2}\right)\right] e^{-i \vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}} \\
q^{T}\left(x, \vec{b}_{\perp}\right)=\int \frac{d^{2} \vec{\Delta}_{\perp}}{(2 \pi)^{2}}\left[H\left(x,-\vec{\Delta}_{\perp}^{2}\right)+\frac{i \Delta_{y}}{2 m_{n}} E\left(x,-\vec{\Delta}_{\perp}^{2}\right)\right] e^{-i \vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}}
\end{gathered}
$$

charge distribution

quark total angular momentum

 contribution to proton spinJi sum rule: $\quad J^{q}=\frac{1}{2}\left[A_{20}^{q}(0)+B_{20}^{q}(0)\right]$

$$
J^{u-d}=0.281(21)(11)
$$

$$
J^{u+d}=0.296(22)(33)
$$

the $3^{\text {rd } . . . ~}$

\ldots and the $4^{\text {th }}$

past those moments ...

x dependence via quasi-PDF

$$
\begin{gathered}
\qquad H(x) \quad E(x) \\
\text { Joshua Miller (Temple U) et al, } \underline{2304.14970}
\end{gathered}
$$

Generalized Parton Distributions from Lattice QCD*
Krzysztof Cichy ${ }^{a}$, Shohini Bhattacharya ${ }^{b}$, Martha Constantinou ${ }^{c}$, Jack Dodson ${ }^{c}$, Xiang Gao ${ }^{d}$, Andreas Metz c, Joshua Miller ${ }^{c}$, Swagato Mukherjee e, Aurora Scapellato ${ }^{c}$, Fernanda Steffens ${ }^{f}$, Yong Zhao ${ }^{d}$

$\mu=2 \mathrm{GeV}$

summary

a new Lorentz invariant formalism for lattice QCD calculations of GPD

t dependence of GPD: faster and more accurate
t dependence of proton's quark GPD $H(x, \xi=0, t) \quad E(x, \xi=0, t)$

