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Introduction

Monte Carlo (MC) generators crucial for HEP predictions

MC developments to reach high precision in HL LHC, LHeC,
FCC, EIC...

Some observables need transverse momentum degrees of
freedom taken into account
→ Transverse momentum dependent (TMD) factorization

There exist analytical TMD factorization approaches e.g.
Collins-Soper-Sterman (CSS)

Parton Branching (PB) approach provides TMD parton
distributions that can be used in general purpose MC generators
→ Applicable to a wide range of inclusive and exclusive
observables
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What is PB?

Provides evolution equations for TMDs and collinear PDFs

Uses Angular Ordering to associate evolution scale with rescaled
transverse momentum of emitted partons

· · ·
xi−1 zixi−1 zi+1xi

Hard
interaction

θi θi+1
q⊥,i

q⊥,i+1

Equations can be solved with MC methods

Contains information of transverse momentum from the whole
evolution chain
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Achievements of PB

2 fitted TMDs available in TMDlib/TMDlib2[arXiv:2103.09741]:
[Bermudez Martinez, Connor, Hautmann, Jung, Lelek, Radescu, Zlebcik, Phys.Rev.D 99 (2019), 074008,

arXiv:1804.11152]

PB-NLO-HERAI+II-2018-set1 (αs(µ))
PB-NLO-HERAI+II-2018-set2 (αs(q⊥))

Collinear distributions fitted to DIS at
HERA, initial k⊥ not yet

Good description of DY-p⊥ spectrum
at high and low energies
[Bermudez Martinez et al., EJPC 80 (2020), 598, arXiv:2001.06488 ]

6 A. Bermudez Martinez et al.: The pT spectrum of low mass DY production at NLO order in the PB method
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Fig. 7. Transverse momentum spectrum of Z production mea-
sured by CMS [7] compared to predictions at NLO using PB-
TMDs.

tainty) and the central values for the theory predictions
(without inclusion of pdf and scale uncertainties, leading

to a larger χ
2/ndf as the one reported in the previous

subsection).
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Fig. 8. The χ
2
/ndf as a function of the width of the in-

trinsic transverse momentum distribution, obtained from a
comparison of the measurements (NuSea [42,43], R209 [41],
PHENIX [40]) with a prediction at NLO using PB-TMDs. For
the theory prediction only the central value is taken, but no
uncertainty from scale variation is included.

A clear minimum is found for NuSea and R209 mea-
surements, with values of qs ∼ 0.3−0.4 GeV. On the other
hand, the PHENIX measurement shows little sensitivity
to the choice of qs, which is understandable since only two
values for pT < 1 GeV are measured, while the other ex-
periments have a ner binning. It is interesting to note
that the values of intrinsic transverse momentum deter-
mined from low-mass DY are rather close to the value of
qs = 0.5 GeV that was assumed in PB-Set2 [49], deter-
mined from ts to inclusive DIS data from HERA which
are not sensitive to intrinsic-kT.

3.3 Comments on the low-mass region

It has been observed in [17] that perturbative xed-order

calculations at O(αs) and O(α2

s) in collinear factorization
are not able to describe the measurements of DY trans-
verse momentum spectra at xed-target experiments in
the region pT/mDY ∼ 1. We remark that this is consis-
tent with the observation which we have made in Fig. 3
that, in this kinematic region, the contribution from the
real hard emission is small compared to the contribution
from multiple parton radiation, embodied in the PB-TMD
evolution. Indeed, Fig. 3 indicates that a purely collinear
NLO calculation would not give a realistic description of
the DY spectrum for pT/mDY ∼ 1 at low energies. On
the other hand, Fig. 4 illustrates that the situation is very
dierent at the LHC: in the region around the Z mass
shown in Fig. 4, hard real emission dominates the trans-
verse momentum spectrum for pT/mDY ∼ 1, so that a
purely collinear NLO calculation gives a good approxima-
tion to the DY process for pT/mDY ∼ 1 at the LHC.

The comparison of theoretical predictions with trans-
verse momentum measurements from NuSea [42,43] in the
top panel of Fig. 6 conrms that the inclusion of multiple
parton emissions, taken into account by the PB-TMD evo-
lution equation [38] (see also discussion in [69]), is essential
to describe the region pT/mDY ∼ 1 at low energies. This
physical picture is supported by the comparison of theo-
retical predictions with measurements at the increasingly
high energies of R209 [41] and PHENIX [40] in the middle
and bottom panels of Fig. 6. Going up to LHC energies
in Fig. 7, we see that the PB-TMD + NLO calculation
describes the spectrum well all the way up to transverse
momenta pT ∼ mDY (while for even higher pT a decit is
observed due to the missing DY + jet NLO correction —
see discussion in [36]).

Our calculation thus indicates that at low energies
QCD contributions beyond xed order (O(αs), O(α2

s),
etc.) are important to describe the region pT/mDY ∼ 1,
unlike the case of LHC energies where xed order calcula-
tions are sucient to describe the region pT/mZ ∼ 1. We
have taken into account all-order contributions through
the PB-TMD evolution formalism, and found that this al-
lows one to describe well the transverse momentum spec-
tra.

To sum up, the DY transverse momentum in the low-
mass region is sensitive to both nite-order QCD contribu-
tions and all-order QCD multi-parton radiation. Theoreti-
cal predictions depend on the matching procedure between
these contributions. Once this is accomplished, low-mass
DY measurements are well described and can provide a
wealth of information on non-perturbative QCD dynam-
ics. In this paper the matching is performed, in the spirit
of [70], with PB-TMDs and MC@NLO (alternative meth-
ods of matching are e.g. those inspired by [12]).

4 Discussion

To put the results of this work in a broader context, one
may start from a simple scenario in which one hopes to

For exclusive observables: CASCADE3 has inital state TMD
parton shower consistent with PB evolution [S. Baranov et al., Eur.Phys.J.C 81

(2021) 5, 425]
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Where to go from here?
Goal of TMD effects through MC:
Connect different regimes with one approach

Many different studies, I will present 3:

PB is an exclusive formulation → can address associated jet
structure of DY-p⊥
Z+jets results through new ”TMD multi-jet merging”
Instead of only colour-neutral probes (DY di-leptons),
investigations of colour-charged probes (e.g. dijets in
back-to-back region, or Z+jet) → Possible factorization breaking
Boson-jet and jet-jet ∆ϕ azimuthal correlations to probe such
breaking effects
Can PB approach be extended to the small-x region? →
interplay small-q⊥ and small-x
k⊥-dependence in splittings
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TMD broadening
TMD effects in jets was until recently ([Bermudez Martinez, Hautmann, Mangano,

Phys.Lett.B 822 (2021) 136700]) unexplored
TMD effects at jet production might be important due to TMD
broadening

aj(x , k
2
⊥, µ

2) =

∫
d2k ′⊥
π

Aj(x , k
′2
⊥ , µ2)Θ(k ′2⊥ − k2⊥)

2

it uses at TMD level the unitarity picture of parton evo-
lution [27, 28] commonly employed at the collinear level
in showering algorithms [29, 30]. Soft gluon emission and
transverse momentum recoils are treated by introducing
the soft-gluon resolution scale zM [25] to separate re-
solvable branchings and non-resolvable branchings, with
the former being described through real-emission split-
ting functions and the latter through Sudakov form fac-
tors [26]. In this approach the TMD evolution equations
are written in the schematic form [26]

Aj

(

x,k2, µ2
)

= ∆j

(

µ2, µ2
0

)

Aj

(

x,k, µ2
0

)

(1)

+
∑

`

∫

d2µ′

πµ′2

∫

dz Kj`

(

x,k, µ2; z, zM , µ′2
)

×A`

(

x/z, |k + (1− z)µ′|2, µ′2
)

,

where: Aj(x,k
2, µ2) is the TMD distribution of avor

j carrying the longitudinal momentum fraction x of the
hadron’s momentum and transverse momentum k at the
evolution scale µ; ∆j is the Sudakov form factor, and Kj`

are evolution kernels, computable in terms of Sudakov
form factors, real-emission splitting functions and phase-
space constraints taking into account soft-gluon angular
ordering [31–33].

Eq. (1) can be viewed as a “forward evolution” equa-
tion, in which µ0 is the initial evolution scale, and z
and µ′ are the branching variables, with z being the
longitudinal momentum transfer at the branching, and
µ′ =

√

µ′2 the momentum scale at which the branch-
ing occurs. Once the TMD distribution Aj(x,k

2, µ2)
evaluated at the scale µ2 is known, the corresponding
TMD parton shower can be generated by “backward evo-
lution” [34].

The above formalism has been used, in the spirit of
the renormalization group evolution for PDFs, to extract
TMD distributions [35] from ts to precision DIS data,
using the QCD t platform xFitter [36] (for other avail-
able TMD ts, see the library [37, 38]). Furthermore,
the formalism has been used to make predictions for
the DY pT spectrum [39], including Sudakov resumma-
tion through next-to-leading-logarithmic accuracy and
matching with next-to-leading-order (NLO) matrix el-
ements [40]. A good description of DY measurements
is achieved across a wide range of energies and masses,
from the LHC down to xed-target experiments [39, 41].
The physical picture emerging from the above studies
is that TMD distributions are characterized by trans-
verse momentum (kT = |k|) widths (σ) of the order
of ΛQCD ∼

<σ
∼
< 1 GeV at µ0 ∼ O(1 GeV), and undergo

kT broadening as the evolution scale µ increases due to
the interplay of resolvable and non-resolvable branchings
with the initial-scale distribution.

Let us then consider a nal state in high-energy
hadronic collisions characterized by a hard scale µ, e.g.
the transverse momentum of the hardest jet in the event.
What is the contribution to the emission of an extra jet of

gluon, µ = 10 GeV

gluon, µ = 100 GeV

gluon, µ = 500 GeV
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FIG. 1. The kT spectrum of the integral TMD gluon distri-
bution, normalized to kT = 0 as in Eq. (3), for longitudinal
momentum fraction x = 10−2 and dierent values of the evo-
lution scale µ. The PB TMD Set 2 [35] is used.

transverse momentum pT , with pT lower than µ, from the
kT broadening of the TMD distribution evolved to scale
µ? To estimate this, we introduce integral TMD distri-
butions aj , obtained from Aj in Eq. (1) by kT -integration
as follows

aj(x,k
2, µ2) =

∫

d2k′

π

Aj(x,k
′2, µ2) Θ(k′2

− k2) . (2)

The distribution aj evaluated at kT = 0 gives the fully
integrated initial-state distribution, namely a standard
collinear PDF. We are interested in the fractional contri-
bution to aj from the tail above transverse momentum
kT , with kT of the order of the jet pT . For any avor j
we thus construct the ratio

Rj(x,k
2, µ2) = aj(x,k

2, µ2)/aj(x, 0, µ
2) . (3)

In Fig. 1 we show the kT dependence of Eq. (3) by an
example showing the integral TMD gluon distribution
ag(x,k

2, µ2), normalized to kT = 0, obtained from the
TMD tted to precision DIS data in [35] (PB TMD
Set 2), for x = 10−2 and various values of µ. We ob-
serve, for instance, that for µ = 100 (500) GeV, there is
a 30% probability that the gluon has developed a trans-
verse momentum larger than 20 (80) GeV.

Rj(x , k
2
⊥, µ

2) =
aj(x , k

2
⊥, µ

2)

aj(x , 0, µ2)

k⊥-tail contribution comparable to
hard ME emissions at LHC energies
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Why TMD multijet merging?

Connecting regime of low-p⊥ and high p⊥
Due to TMD broadening TMD effects can be non-neglegible at
high p⊥
New merging procedure needed to be developed to account for
double counting between ME and TMD shower
[Bermudez Martinez, Hautmann, Mangano, Phys.Lett.B 822 (2021) 136700]

[Bermudez Martinez, Hautmann, Mangano, JHEP09(2022)060]

Compared to standard MLM multijet merging:

Reduced systematic uncertainties

Improvement description of higher-order emissions beyond the
maximum parton multiplicity
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TMD multijet merging results
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Figure 23. Predictions obtained using Madgraph+Pythia6 with MLM merging and the TMD
merging framework are compared for exclusive (left) and inclusive (right) jet multiplicity distribu-
tions in the production of a Z-boson in association with jets, at

√
s = 13 TeV. The phase space for

the calculation follows the one in [91], whose data are included in these and subsequent plots.

shower evolution are kept the same in the two calculations. Since the final-state parton
shower in our TMD merging calculation uses the parton shower routine PYSHOW of
Pythia6 [48], we compare our TMD merging results with the results which we obtain by
using Madgraph+Pythia6 with MLM merging.

We have first verified that, as expected, at the matrix element (ME) level our results
coincide with those of Madgraph when using the same generation cuts. Next we have
verified that, when considering only the final-state parton shower (without including any
PB-TMD evolution and initial-state shower), our TMD merging results agree with the
results obtained with Madgraph+Pythia6 computations. We have finally compared the
full TMD merging and the Madgraph + Pythia6 calculations. Results are reported in
figures 23-27.

Clear differences emerge in distributions that are most sensitive to higher-order shower
emissions, in particular the overall jet multiplicity, shown in figure 23, and the pT spectrum
of the leading jet in final states with at least 4 jets, shown in figure 25. The better
agreement of the TMD merging calculation with data, relative to the canonical MLM-
matching procedure implemented in the Madgraph+Pythia6 result, together with the
observation made previously that the two approaches are equivalent when limited to the
final-state showers only, reinforce the conclusion that the TMD initial-state evolution leads
to a better description of higher-order, non-collinear emissions.

7 Studies of PDF and intrinsic kT dependence

In the previous sections we have studied multi-jet merging methods and we have concen-
trated in particular on the implications of TMD evolution (see figures 1 and 2) on multi-jet
observables, examining in detail the example of Z + jets production at the LHC. One may

– 27 –

Large p⊥ without merging:
Good description of Z-boson p⊥ in
whole p⊥ spectrum

Jet multiplicity in Z + jets
production well described, also for
multiplicities larger than the
maximum number of jets in ME
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Figure 23. Predictions obtained using Madgraph+Pythia6 with MLM merging and the TMD
merging framework are compared for exclusive (left) and inclusive (right) jet multiplicity distribu-
tions in the production of a Z-boson in association with jets, at

√
s = 13 TeV. The phase space for

the calculation follows the one in [91], whose data are included in these and subsequent plots.

shower evolution are kept the same in the two calculations. Since the final-state parton
shower in our TMD merging calculation uses the parton shower routine PYSHOW of
Pythia6 [48], we compare our TMD merging results with the results which we obtain by
using Madgraph+Pythia6 with MLM merging.

We have first verified that, as expected, at the matrix element (ME) level our results
coincide with those of Madgraph when using the same generation cuts. Next we have
verified that, when considering only the final-state parton shower (without including any
PB-TMD evolution and initial-state shower), our TMD merging results agree with the
results obtained with Madgraph+Pythia6 computations. We have finally compared the
full TMD merging and the Madgraph + Pythia6 calculations. Results are reported in
figures 23-27.
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Figure 25. Predictions obtained using Madgraph+Pythia6 with MLM merging, and the TMD
merging framework are compared for the leading jet pT spectrum in inclusive Z+2 (top left), 3 (top
right), and 4 (bottom) jets. The phase space for the calculation follows the one in [91].

case of DY transverse momentum distributions in refs. [58, 59]. The results in figures 28-32
show that the predictions for multi-jet observables change little under such variations, with
the changes being smaller than the experimental uncertainties.

We next investigate the effect of using different choices of collinear parton distributions
in the calculation of the parton-level ME samples. The nominal choice of the integrated
TMD parton density for the ME calculation is compared to the results obtained using the
NNPDF2.3LO [104] and the MMHT2014LO [105] parton distributions. The comparisons
are shown in figures 33-37. In general we observe that a change of the collinear PDF used
in the ME calculation has a small effect in the calculation compared to the experimental
uncertainty.

– 29 –
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Azimuthal correlations
Description of high p⊥-jets are an important test of QCD
LO/NLO + PS predictions of ∆ϕ12 → large deviations from
data (larger than experimental uncertainties)
Potential factorization breaking due to soft-gluon effects
Studies with PB performed in: [H. Yang et al., Eur.Phys.J.C 82 (2022) 8, 755]
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αs in dijet azimuthal correlations
Predictions obtained with MC@NLO+HERWIG6 subtraction
terms+PS from CASCADE3
Scale+TMD uncertainties

36 Page 6 of 10 Eur. Phys. J. C (2022) 82 :36

Fig. 6 Azimuthal correlation φ12 for p
leading
T > 200 GeV (left) and p

leading
T > 1000 GeV (right) as measured by CMS [26] compared with

predictions from MCatNLO+CAS3. Shown are the uncertainties coming from the scale variation (as described in the text) as well as the uncertainties

coming from the TMD

Fig. 7 Azimuthal correlation φ12 in the back-to-back region for

p
leading
T > 200 GeV (left) and p

leading
T > 1000 GeV (right) as mea-

sured by CMS [27] compared with predictions from MCatNLO+CAS3.

Shown are the uncertainties coming from the scale variation (as

described in the text) as well as the uncertainties coming from the TMD

In Fig. 4 we show a comparison of the measurement by

CMS [26] for different values of p
leading
T with the calcula-

tion MCatNLO+CAS3 including PB-TMDs, parton shower,

and hadronization. The uncertainties from scale variation and

TMD determination are shown separately.

In Fig. 5 the measured φ12 distribution [27] in the back-

to-back region is compared with the prediction MCatNLO

+CAS3.

In general, the measurements are very well described,

especially in the back-to-back region. The scale uncertainty

is signicantly larger than the TMD uncertainty, especially

in the low p
leading
T region. A difference between the measure-

123

Sensitivity to low k⊥ in
back-to-back region →
Significant difference between
predictions with set1 (αs(µ))
and set2 (αs(q⊥))

Set2 provides better
description
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Description of ∆ϕ12
Wide range of ∆ϕ12 Back-to-back region

Eur. Phys. J. C (2022) 82 :36 Page 7 of 10 36

Fig. 8 Azimuthal correlation φ12 over a wide range and (left) in the

back-to-back region (right) for p
leading
T > 200 GeV compared with pre-

dictions from MCatNLO+Pythia8 and MCatNLO+CAS3. The uncer-

tainties in the MCatNLO+Pythia8 calculation are obtained from scale

and associated shower variations, as described in the main text

ment and the prediction is observed for smallerφ12 which is

due to missing higher order corrections in the matrix element

calculation. Even at high p
leading
T > 1000 GeV the predic-

tion is in agreement with the measurements (within uncer-

tainties), while only in the highest φ12 bin (φ12 > 179o)

a deviation of about 10% is observed.

In Figs. 6 and 7, the predictions using PB-NLO-2018-

Set 1 are compared with those from PB-NLO-2018-Set 2

and with the measurements. The difference between Set 1 and

Set 2 becomes signicant in the back-to-back region, which

is sensitive to the low kT-region of the TMD. As already

observed in the case of Z-boson production in Ref. [42],

Set 2 with the transverse momentum as a scale for αs, which

is required from angular ordering conditions, allows a much

better description of the measurement. It has been explicitly

checked that the choice of the collinear parton density func-

tion (in contrast to the choice of the TMD densities) does not

matter for the φ12 distributions, since they are normalized.

The region of low φ12 in Figs. 4 and 6 is not well described

with an NLO dijet matrix element calculation supplemented

with TMD densities and TMD parton shower because in the

low φ12 region higher-order hard emissions play a signif-

icant role. It has been shown in [67] that the inclusion of

higher order matrix elements with the new TMD merging

method of Ref. [44] leads to a very good description of the

low φ12 region.

In Fig. 8 predictions obtained with MCatNLO+Pythia8

are compared with MCatNLO+CAS3. In the calculation

of MCatNLO+Pythia8, the Pythia8 subtraction terms are

used and the NNPDF3.0 [68] parton density and tune

CUETP8M1 [69] are applied. The uncertainties of the

PYTHIA prediction are derived by combining thexed-order

scale variation from MCatNLO with renormalization scale

variations in the parton shower. We use the method of [70]

together with the guidelines of [71] to obtain consistent scale

variations where possible. In particular, this means that the

renormalization scale variation at xed order and in the par-

ton shower are fully correlated.1 The factorization scale vari-

ation is only applied at xed order, as argued in [71]. We

observe a signicant dependence on the matching scale μm ,

the details of matching in case of dijets needs further inves-

tigation.

Shown in Fig. 8 is also the contribution from multipar-

ton interactions, which is very small for jets with p
leading
T >

200 GeV. The prediction obtained with MCatNLO+Pythia8

is in all φ12 regions different from the measurement and

MCatNLO+CAS3, illustrating the role of the treatment of

parton showers.

In conclusion, the predictions of MCatNLO+CAS3 are

in reasonable agreement with the measurements in the

larger φ12 regions, where the contribution from higher

order matrix elements is small. In the back-to-back region

(φ12 → π ) the predictions obtained with PB-TMDs and

1 This also ensures that for xed-order-dominated observables, the can-

cellation between the expansion of the shower and the subtraction in

MC@NLO also occurs for non-central renormalization scales without

signicant deformation of the – there fully appropriate – xed-order

uncertainties.

123

Good description in high ∆ϕ12 regions with PB, while Pythia8 is different
from measurement in all regions

Low ∆ϕ12 regions not well described due to missing higher-order hard
emissions. With TMD merging better description of this region
(Presentation at workshop REF2021 by A. Bermudez Martinez)
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Description of ∆ϕ12 for Z+j and j+j
[van Kampen et al. arXiv:2209.13945v1]
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j+j stronger correlated than Z+j for
low leading p⊥ jets

Different breaking patterns can be
expected for strong and weak
azimuthal correlations → interesting
probe to study both Z+j and j+j
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Including TMD splitting functions

[Hautmann, Hentschinski, Keersmaekers, Kusina, Kutak, Lelek,Phys.Let.B 833 (2022), 137276, arXiv:2205.15873]

Investigation of TMD effects at level of partonic splittings in PB

We use TMD Splitting functions defined through high-energy
factorization [arXiv:hep-ph/9405388]

We extend the PB approach , using ”unitarity”, to introduce
TMD splitting kernels and new TMD Sudakov form factors

First step toward a full generator that extends PB approach to
the small-x
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TMD splitting functions
Pqg

(
αs , z , k

′
⊥, q̃⊥

)
=
αsTF

2π

q̃2
⊥z(1− z)

(q̃2
⊥ + z(1− z)k ′2

⊥)2
× [arXiv:hep-ph/9405388][

q̃2
⊥

z(1− z)
+ 4(1− 2z)q̃⊥ · k ′

⊥ − 4
(q̃⊥ · k ′

⊥)
2

k ′2
⊥

+ 4z(1− z)k ′2
⊥

]

k′

z

Hard
interaction

k

q

q̃⊥ = k⊥ − zk ′
⊥

For k ′2⊥ ≪ k2⊥ after angular
averaging:
DGLAP splitting function

For k ′2⊥ ∼ O(k2⊥):
Series expansion (k ′2⊥/q̃2⊥)

n

Resummation ln(1/z)

Other partonic channels studied in [1511.08439, 1607.01507, 1711.04587]

The splitting functions are positive definite and interpolate
consistently between the collinear limit and the high-energy limit
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Numerical results with TMD P
x
f
(x
,µ

)
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Take fixed starting distribution at scale µ0.

Compare evolved integrated TMDs:
Purple curve: Full result
Red dashed curve: Evolution with collinear kernels

Blue dotted curve: Model with TMD splitting
functions only in resolvable emissions

Significant differences especially for low x, not
washed out after integration over k⊥

Differences between red and purple due to dynamical effects from TMD
splitting functions

Large differences between Full result and TMD-Resolvable due to violation
of momentum conservation in TMD-Resolvable

From TMDs: Effects in whole k⊥ region
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Momentum conservation check
Full Result

µ2 (GeV2) αs (µ
2), fix. zM αs (q

2
⊥), fix. zM αs (q

2
⊥), dyn. zM

3 1.000 1.000 1.000
10 0.999 0.999 0.999

102 0.997 0.996 0.997

103 0.994 0.992 0.994

104 0.991 0.987 0.991

105 0.984 0.978 0.983

TMD-Resolvable
µ2 (GeV2) αs (µ

2), fix. zM αs (q
2
⊥), fix. zM αs (q

2
⊥), dyn. zM

3 1.029 1.038 1.000
10 1.087 1.139 1.007

102 1.156 1.304 1.045

103 1.195 1.413 1.091

104 1.219 1.478 1.129

105 1.229 1.507 1.148

Collinear Kernels
µ2 (GeV2) αs (µ

2) fix. zM αs (q
2
⊥), fix. zM αs (q

2
⊥), dyn. zM

3 1.000 1.000 1.000
10 0.999 0.999 0.999

102 0.997 0.997 0.997

103 0.995 0.993 0.995

104 0.992 0.989 0.992

105 0.986 0.981 0.984

In table:∑
a

∫ 1

x0
dx
∫
dk2

⊥ Ãa(x , k
2
⊥, µ

2)

x0 = 10−5

Studied for different scales
of αs , soft gluon resolution
scales zM

As expected: Our full result and the result with collinear kernels conserve momentum.
When we use TMD splitting function only in resolvable branchings, there is violation of
momentum conservation.
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Next step: CCFM phase space?
CCFM equations contain the the full AO phase space, consistent
with both small-x and large-x
It is however an approach for gluons and non-trivial to extend to
all flavours

TMD splitting functions might take over role of Non-Sudakov:
resummation of small-x

Work in progress: New model with full AO phase space, based on
momentum conservation and without Non-Sudakov form factors

µ2
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Conclusions

PB has been proven in the past to work well on inclusive DY and
DIS

Studies are starting to take full advantage of a TMD
factorization based MC:

With TMD multijet merging one can study jet structure and
combine TMD effects with hard ME jet production
Colour-charged probes to factorization breaking such as
azimuthal correlations are investigated
First efforts to extend PB to small-x have been achieved through
inclusion of TMD splitting functions

Thank you!
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PB Evolution Equations
Method to obtain transverse momentum dependent PDFs (TMDs) Ãa(x , k2

⊥, µ2) and

collinear PDFs f̃a(x , µ2) =
∫
dk2

⊥Ãa(x , k2
⊥, µ2):

[Hautmann, Jung, Lelek, Radescu, Zlebcik, JHEP 01 (2018) 070, 1708.03279]

Ãa(x, k
2
⊥, µ

2) = ∆a(µ
2)Ãa(x, k

2
⊥, µ

2
0) +

∑
b

∫
d2µ′

⊥
πµ′2 Θ(µ2 − µ

′2)Θ(µ′2 − µ
2
0)

∆a(µ
2)

∆a(µ′2)
×

×
∫ zM

x

dzPR
ab(z, αs )Ãb(

x

z
, (k⊥ + (1 − z)µ′

⊥)2, µ′2)

PR
ab(z): (real emission part of) DGLAP splitting functions: Probability that a

branching will happen
b: incoming parton, a: outgoing parton, z momentum fraction of parton a to b

PR
ab(z, αs) =

∑∞
1 P

(n)
ab (z)αs

n

Sudakov form factor:

∆a(µ2) = exp

(
−∑

b

∫ µ2

µ2
0

dµ′2

µ′2
∫ zM
0 dz z PR

ba(z, αs)

)
Interpretation: probability of an evolution without any resolvable branchings
zM : Soft-gluon resolution scale, separates resolvable/non-resolvable branchings
Fixed (µ-independent) zM ≈ 1 ↔ dynamical (µ-dependent) zM
Angular Ordering (AO): evolution scale µ′ = q⊥

1−z
, q⊥ transverse momentum emitted parton

αs(µ) ↔ αs(q⊥)
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2)Ãa(x, k

2
⊥, µ

2
0) +

∑
b

∫
d2µ′

⊥
πµ′2 Θ(µ2 − µ

′2)Θ(µ′2 − µ
2
0)

∆a(µ
2)

∆a(µ′2)
×

×
∫ zM

x

dzPR
ab(z, αs )Ãb(
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⊥, µ2) and

collinear PDFs f̃a(x , µ2) =
∫
dk2
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Other studies with PB
Studies on the dynamical resolution scale and comparison between
single versus multiple emission methods [Hautmann, Keersmaekers, Lelek, van

Kampen, Nucl.Phys.B 949 (2019) 114795]

Including EW corrections in evolution equations and determination of
photon TMD
[Jung, Taheri Monfared, Wening, Phys.Let.B 817 (2021), 136299, arXiv:2102.01494]

Studies on the 4 and 5 Flavor Variable Number Scheme and Z +
heavy flavour events, [Jung, Taheri Monfared, arXiv:2106.09791], [Baranov, Bermudez Martinez,

Jung, Lipatov, Malyshev, Taheri Monfared, EPJC 82 (2022), 157]

Extraction of the CS Kernel from PB predictions [Bermudez Martinez,Vladimirov,

Phys.Rev.D 106 (2022) 9, L091501, arXiv:2206.01105]

Studies on intrinsic k⊥ (to be published soon)
Studies on Sudakov resummation in PB, including studies on
non-perturbative Sudakov form factor and studies on NNLL
resummation
Ongoing/planned projects with fits: Fits with dynamical resolution
scale, LO fits, global fits, fits of intrinsic k⊥,...
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Unitarity
TMD evolution equations: Ã: Momentum weighted TMD

Ãa(x, k
2
⊥, µ

2) = Ãa(x, k
2
⊥, µ

2
0) −

∫
d2µ′

⊥
πµ′2

⊥
Fa(µ

′2
⊥, k2⊥)Ãa(x, k

2
⊥, µ

′2
⊥)Θ(µ′2

⊥ − µ
2
0)Θ(µ2 − µ

′2
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⊥, k2⊥)Ãa(x, k

2
⊥, µ

′2
⊥)Θ(µ′2

⊥ − µ
2
0)Θ(µ2 − µ

′2
⊥)+

+
∑
b

∫
d2µ′

⊥
πµ′2

⊥

zM∫
x

dzP̃R
ab(z, k⊥ + (1 − z)µ′

⊥, µ
′
⊥)Ãb
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⊥Ãa(x , k
2
⊥, µ

2
0).

⇒

Fa(µ
′2, k2

⊥) =
∑
b

zM∫
0

dz zP̄R
ba(z , k

2
⊥, µ

′2).

P̄R
ba(z, k

2
⊥, µ′2): Angular averaged TMD splitting functions

4/5



Unitarity (2)
Introduce TMD Sudakov form factors:

∆a(µ
2, k2

⊥) = exp
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−
∑
b

∫ µ2

µ2
0

dµ′2

µ′2

∫ zM

0
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Rewrite the evolution equation:
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⊥, µ2
0
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+
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d2µ′
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0)Θ(µ2 − µ′2
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zM∫
x

dz
∆a

(
µ2, k2
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)

∆a
(
µ′2
⊥, k2

⊥
) P̃R

ab

(
z, k⊥ + (1− z)µ′

⊥, µ′
⊥
)
Ãb

( x

z
, (k⊥ + (1− z)µ′

⊥)2, µ′2
⊥
)

Equation has similar structure to other Parton Branching equations
[arXiv:1704.01757, arXiv:1708.03279] → similar MC
Except for scale generation according to TMD Sudakov form factor:
VETO algorithm [arXiv:hep-ph/0603175]
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Ãa
(
x , k2

⊥, µ2
)
= ∆a

(
µ2, k2

⊥
)
Ãa
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