

Recent advances in the Parton Branching approach for transverse momentum dependent distributions QCD Evolution Workshop 2023

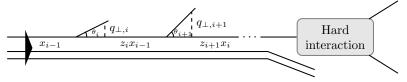
L. Keersmaekers

Introduction

- Monte Carlo (MC) generators crucial for HEP predictions
- MC developments to reach high precision in HL LHC, LHeC, FCC, EIC...
- Some observables need transverse momentum degrees of freedom taken into account
 - \rightarrow Transverse momentum dependent (TMD) factorization
- There exist analytical TMD factorization approaches e.g. Collins-Soper-Sterman (CSS)
- Parton Branching (PB) approach provides TMD parton distributions that can be used in general purpose MC generators
 → Applicable to a wide range of inclusive and exclusive observables

What is PB?

- Provides evolution equations for TMDs and collinear PDFs
- Uses Angular Ordering to associate evolution scale with rescaled transverse momentum of emitted partons



- Equations can be solved with MC methods
- Contains information of transverse momentum from the whole evolution chain

Achievements of PB

2 fitted TMDs available in TMDlib/TMDlib2[arXiv:2103.09741]:

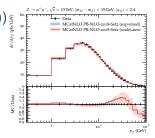
[Bermudez Martinez, Connor, Hautmann, Jung, Lelek, Radescu, Zlebcik, Phys.Rev.D 99 (2019), 074008. arXiv:1804.11152]

PB-NLO-HERAI+II-2018-set1 ($\alpha_s(\mu)$) **PB-NLO-HERAI**+II-2018-set2 $(\alpha_s(q_{\perp}))_{s}$

Collinear distributions fitted to DIS at HERA, initial k_{\perp} not yet

Good description of $DY-p_{\perp}$ spectrum at high and low energies

[Bermudez Martinez et al., EJPC 80 (2020), 598, arXiv:2001.06488]



For exclusive observables: CASCADE3 has initial state TMD. parton shower consistent with PB evolution [S. Baranov et al., Eur.Phys.J.C 81 (2021) 5, 425]

Where to go from here?

Goal of TMD effects through MC: Connect different regimes with one approach

Many different studies, I will present 3:

■ PB is an exclusive formulation \rightarrow can address associated jet structure of DY- p_{\perp}

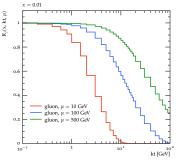
Z+jets results through new "TMD multi-jet merging"

- Instead of only colour-neutral probes (DY di-leptons), investigations of colour-charged probes (e.g. dijets in back-to-back region, or Z+jet) → Possible factorization breaking Boson-jet and jet-jet $\Delta \phi$ azimuthal correlations to probe such breaking effects
- Can PB approach be extended to the small-x region? \rightarrow interplay small- q_{\perp} and small-x k_{\perp} -dependence in splittings

TMD broadening

- TMD effects in jets was until recently ([Bermudez Martinez, Hautmann, Mangano, Phys.Lett.B 822 (2021) 136700]) unexplored
- TMD effects at jet production might be important due to TMD broadening

$$a_j(x,k_\perp^2,\mu^2) = \int rac{d^2k_\perp'}{\pi} \mathcal{A}_j(x,k_\perp'^2,\mu^2) \Theta(k_\perp'^2-k_\perp^2)$$



$$R_j(x, k_{\perp}^2, \mu^2) = rac{a_j(x, k_{\perp}^2, \mu^2)}{a_j(x, 0, \mu^2)}$$

■ k_⊥-tail contribution comparable to hard ME emissions at LHC energies

Why TMD multijet merging?

- Connecting regime of low- p_{\perp} and high p_{\perp}
- \blacksquare Due to TMD broadening TMD effects can be non-neglegible at high p_{\perp}
- New merging procedure needed to be developed to account for double counting between ME and TMD shower

[Bermudez Martinez, Hautmann, Mangano, Phys.Lett.B 822 (2021) 136700]

[Bermudez Martinez, Hautmann, Mangano, JHEP09(2022)060]

Why TMD multijet merging?

- Connecting regime of low- p_{\perp} and high p_{\perp}
- \blacksquare Due to TMD broadening TMD effects can be non-neglegible at high p_{\perp}
- New merging procedure needed to be developed to account for double counting between ME and TMD shower

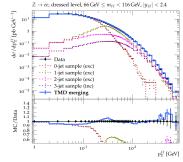
[Bermudez Martinez, Hautmann, Mangano, Phys.Lett.B 822 (2021) 136700]

[Bermudez Martinez, Hautmann, Mangano, JHEP09(2022)060]

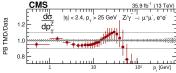
Compared to standard MLM multijet merging:

- Reduced systematic uncertainties
- Improvement description of higher-order emissions beyond the maximum parton multiplicity

TMD multijet merging results

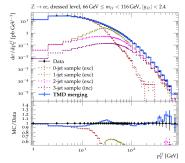


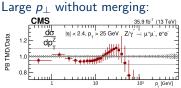
Large p_{\perp} without merging:

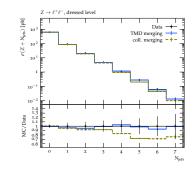


Good description of Z-boson p_{\perp} in whole p_{\perp} spectrum

TMD multijet merging results

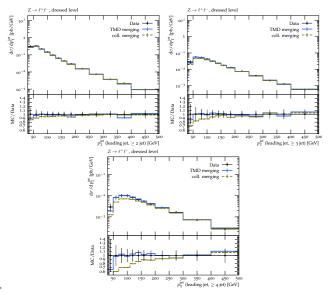






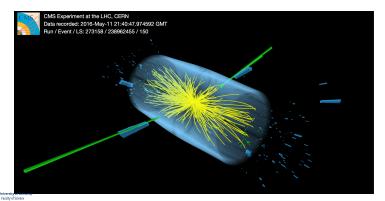
- Good description of Z-boson p_{\perp} in whole p_{\perp} spectrum
- Jet multiplicity in Z + jets production well described, also for multiplicities larger than the maximum number of jets in ME

Leading Jet p_{\perp}



Azimuthal correlations

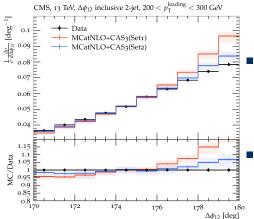
- Description of high p_{\perp} -jets are an important test of QCD
- LO/NLO + PS predictions of $\Delta \phi_{12} \rightarrow$ large deviations from data (larger than experimental uncertainties)
- Potential factorization breaking due to soft-gluon effects
- Studies with PB performed in: [H. Yang et al., Eur.Phys.J.C 82 (2022) 8, 755]



α_s in dijet azimuthal correlations

Predictions obtained with MC@NLO+HERWIG6 subtraction terms+PS from CASCADE3

Scale+TMD uncertainties



Sensitivity to low k_{\perp} in back-to-back region \rightarrow Significant difference between predictions with set1 ($\alpha_s(\mu)$) and set2 ($\alpha_s(q_{\perp})$)

 Set2 provides better description

Description of $\Delta \phi_{12}$

Wide range of $\Delta \phi_{12}$ Back-to-back region CMS, 13 TeV, pp \rightarrow two jets, 200 $< p_T^{\text{leading}} <$ 300 GeV CMS, 13 TeV, $\Delta \phi_{12}$ inclusive 2-jet, $200 < p_T^{\text{leading}} < 300 \text{ GeV}$ $\frac{1}{\sigma} \frac{d\sigma}{d\Delta\phi_{12}} \left[rad^{-1} \right]$ $\frac{1}{\sigma} \frac{d\sigma}{d\Delta\phi_{12}} [deg^{-1} \\ 80.0 \\ 80.0 \\ 10$ -+ Data + Data MCatNLO+CAS3(Scale7pt) MCatNLO+CAS3(Scale7pt) MCatNLO+P8(Scale7pt) noMP MCatNLO+P8(Scale7pt)_noMPI MCatNLO+P8(Scale7pt) MPI MCatNLO+P8(Scale7pt) MPI 0.07 10 0.06 0.05 10^{-2} 0.04 1.4 1.15 1.1 MC/Data 1.2 MC/Data 1.05 0.9 0.95 0.8 0.9 0.85 0.6 0.8 1.8 2 2.2 2.8 170 172 174 178 16 26 3 176 180 $\Delta \phi_{12}$ [rad] $\Delta \phi_{12}$ [deg]

- Good description in high $\Delta \phi_{12}$ regions with PB, while Pythia8 is different from measurement in all regions
- Low Δφ₁₂ regions not well described due to missing higher-order hard emissions. With TMD merging better description of this region (Presentation at workshop REF2021 by A. Bermudez Martinez)

University of Antw I Faculty of Science

Description of $\Delta \phi_{12}$ **for Z+j and j+j**

13 TeV, pp \rightarrow Z+1jet (two jets), 200 < p_T^{leading} < 300 GeV ii-MCatNLO+CAS(Scale7nt 0.1 塘 0.1 0.00 0.0 0.07 0.06 0.05 0.04 1.05 Ratio 0.95 0.9 0.85 176 178 $\Delta \phi_{Zi}(\Delta \phi_{12})$ [deg] 13 TeV, pp \rightarrow Z+1jet (two jets), 1000 < p_T^{leading} < 1200 GeV 1 4 [deg-1 ii-MCatNI O+CAS(Sci 0.15 0.1 0.05 1.0 Ratio 0.95 0.85 172 174 176 178 $\Delta \phi_{Zj}(\Delta \phi_{12})$ [deg]

[van Kampen et al. arXiv:2209.13945v1]

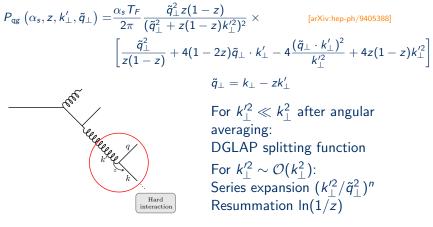
- j+j stronger correlated than Z+j for low leading p⊥ jets
- Different breaking patterns can be expected for strong and weak azimuthal correlations → interesting probe to study both Z+j and j+j

Including TMD splitting functions

[Hautmann, Hentschinski, Keersmaekers, Kusina, Kutak, Lelek, Phys.Let.B 833 (2022), 137276, arXiv:2205.15873] Investigation of TMD effects at level of partonic splittings in PB

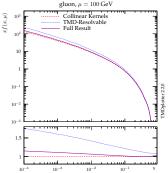
- We use TMD Splitting functions defined through high-energy factorization [arXiv:hep-ph/9405388]
- We extend the PB approach , using "unitarity", to introduce TMD splitting kernels and new TMD Sudakov form factors
- First step toward a full generator that extends PB approach to the small-x

TMD splitting functions



Other partonic channels studied in [1511.08439, 1607.01507, 1711.04587] The splitting functions are positive definite and interpolate consistently between the collinear limit and the high-energy limit

Numerical results with TMD P



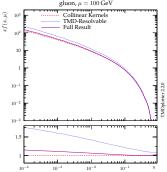
Take fixed starting distribution at scale μ_0 .

Compare evolved integrated TMDs: Purple curve: Full result Red dashed curve: Evolution with collinear kernels

Significant differences especially for low x, not washed out after integration over k_{\perp}

Differences between red and purple due to dynamical effects from TMD splitting functions

Numerical results with TMD P



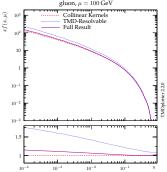
Take fixed starting distribution at scale μ_0 .

Compare evolved integrated TMDs: Purple curve: Full result Red dashed curve: Evolution with collinear kernels Blue dotted curve: Model with TMD splitting functions only in resolvable emissions

Significant differences especially for low x, not washed out after integration over k_{\perp}

- Differences between red and purple due to dynamical effects from TMD splitting functions
- Large differences between Full result and TMD-Resolvable due to violation of momentum conservation in TMD-Resolvable

Numerical results with TMD P



Take fixed starting distribution at scale μ_0 .

Compare evolved integrated TMDs: Purple curve: Full result Red dashed curve: Evolution with collinear kernels Blue dotted curve: Model with TMD splitting functions only in resolvable emissions

Significant differences especially for low x, not washed out after integration over k_{\perp}

- Differences between red and purple due to dynamical effects from TMD splitting functions
- Large differences between Full result and TMD-Resolvable due to violation of momentum conservation in TMD-Resolvable

From TMDs: Effects in whole k_{\perp} region

Momentum conservation check

	Full Result		
$\mu^2~({ m GeV}^2)$	$\alpha_s(\mu^2)$, fix. z_M	$\alpha_s(q_{\perp}^2)$, fix. z_M	$\alpha_s(q_{\perp}^2)$, dyn. z_M
3	1.000	1.000	1.000
10	0.999	0.999	0.999
10 ²	0.997	0.996	0.997
10 ³	0.994	0.992	0.994
10 ⁴	0.991	0.987	0.991
10 ⁵	0.984	0.978	0.983
	TMD-Resolvable		
μ^2 (GeV ²)	$\alpha_s(\mu^2)$, fix. z_M	$\alpha_s(q_\perp^2)$, fix. z_M	$\alpha_s(q_\perp^2)$, dyn. z_M
3	1.029	1.038	1.000
10	1.087	1.139	1.007
10 ²	1.156	1.304	1.045
10 ³	1.195	1.413	1.091
10 ⁴	1.219	1.478	1.129
10 ⁵	1.229	1.507	1.148
	Collinear Kernels		
μ^2 (GeV 2)	$\alpha_s(\mu^2)$ fix. z_M	$\alpha_s(q_\perp^2)$, fix. z_M	$\alpha_s(q_\perp^2)$, dyn. z_M
3	1.000	1.000	1.000
10	0.999	0.999	0.999
10 ²	0.997	0.997	0.997
10 ³	0.995	0.993	0.995
10 ⁴	0.992	0.989	0.992
10 ⁵	0.986	0.981	0.984

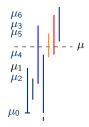
In table: $\sum_{a} \int_{x_{a}}^{1} dx \int dk_{\perp}^{2} \tilde{\mathcal{A}}_{a}(x, k_{\perp}^{2}, \mu^{2})$ $x_0 = 10^{-5}$

Studied for different scales of α_s , soft gluon resolution scales z_M

As expected: Our full result and the result with collinear kernels conserve momentum. When we use TMD splitting function only in resolvable branchings, there is violation of momentum conservation.

Next step: CCFM phase space?

- CCFM equations contain the the full AO phase space, consistent with both small-x and large-x
- It is however an approach for gluons and non-trivial to extend to all flavours



Next step: CCFM phase space?

- CCFM equations contain the the full AO phase space, consistent with both small-x and large-x
- It is however an approach for gluons and non-trivial to extend to all flavours
- TMD splitting functions might take over role of Non-Sudakov: resummation of small-x

Work in progress: New model with full AO phase space, based on momentum conservation and without Non-Sudakov form factors

Conclusions

- PB has been proven in the past to work well on inclusive DY and DIS
- Studies are starting to take full advantage of a TMD factorization based MC:
 - With TMD multijet merging one can study jet structure and combine TMD effects with hard ME jet production
 - Colour-charged probes to factorization breaking such as azimuthal correlations are investigated
 - First efforts to extend PB to small-x have been achieved through inclusion of TMD splitting functions

Thank you!

Method to obtain transverse momentum dependent PDFs (TMDs) $\tilde{\mathcal{A}}_{a}(x, k_{\perp}^{2}, \mu^{2})$ and collinear PDFs $\tilde{f}_{a}(x, \mu^{2}) = \int dk_{\perp}^{2} \tilde{\mathcal{A}}_{a}(x, k_{\perp}^{2}, \mu^{2})$:

[Hautmann, Jung, Lelek, Radescu, Zlebcik, JHEP 01 (2018) 070, 1708.03279]

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu_{0}^{2}) + \sum_{b} \int \frac{d^{2}\mu_{\perp}'}{\pi\mu'^{2}} \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2})\frac{\Delta_{a}(\mu'^{2})}{\Delta_{a}(\mu'^{2})} \times \\ &\times \int_{x}^{z_{M}} dz P_{ab}^{R}(z,\alpha_{s})\tilde{\mathcal{A}}_{b}(\frac{x}{z},(k_{\perp}+(1-z)\mu_{\perp}')^{2},\mu'^{2}) \end{split}$$

Method to obtain transverse momentum dependent PDFs (TMDs) $\tilde{\mathcal{A}}_{a}(x, k_{\perp}^{2}, \mu^{2})$ and collinear PDFs $\tilde{f}_{a}(x, \mu^{2}) = \int dk_{\perp}^{2} \tilde{\mathcal{A}}_{a}(x, k_{\perp}^{2}, \mu^{2})$:

[Hautmann, Jung, Lelek, Radescu, Zlebcik, JHEP 01 (2018) 070, 1708.03279]

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu_{0}^{2}) + \sum_{b} \int \frac{d^{2}\mu_{\perp}'}{\pi\mu'^{2}} \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2})\frac{\Delta_{a}(\mu'^{2})}{\Delta_{a}(\mu'^{2})} \times \\ &\times \int_{x}^{z_{M}} dz \frac{\mathcal{P}_{ab}^{R}(z,\alpha_{s})\tilde{\mathcal{A}}_{b}(\frac{x}{z},(k_{\perp}+(1-z)\mu_{\perp}')^{2},\mu'^{2}) \end{split}$$

P^R_{ab}(z): (real emission part of) DGLAP splitting functions: Probability that a branching will happen

b: incoming parton, *a*: outgoing parton, *z* momentum fraction of parton *a* to *b*

 $P_{ab}^{R}(z,\alpha_{s}) = \sum_{1}^{\infty} P_{ab}^{(n)}(z) \alpha_{s}^{n}$

Method to obtain transverse momentum dependent PDFs (TMDs) $\tilde{\mathcal{A}}_{a}(x, k_{\perp}^{2}, \mu^{2})$ and collinear PDFs $\tilde{f}_{a}(x, \mu^{2}) = \int dk_{\perp}^{2} \tilde{\mathcal{A}}_{a}(x, k_{\perp}^{2}, \mu^{2})$:

[Hautmann, Jung, Lelek, Radescu, Zlebcik, JHEP 01 (2018) 070, 1708.03279]

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu_{0}^{2}) + \sum_{b} \int \frac{d^{2}\mu_{\perp}'}{\pi\mu'^{2}} \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2}) \frac{\Delta_{a}(\mu'^{2})}{\Delta_{a}(\mu'^{2})} \times \\ &\times \int_{x}^{z_{M}} dz P_{ab}^{R}(z,\alpha_{s})\tilde{\mathcal{A}}_{b}(\frac{x}{z},(k_{\perp}+(1-z)\mu_{\perp}')^{2},\mu'^{2}) \end{split}$$

P^R_{ab}(z): (real emission part of) DGLAP splitting functions: Probability that a branching will happen

b: incoming parton, a: outgoing parton, z momentum fraction of parton a to b

- $P^{R}_{ab}(z,\alpha_{s}) = \sum_{1}^{\infty} P^{(n)}_{ab}(z) \alpha_{s}^{n}$
- Sudakov form factor:

$$\Delta_{a}(\mu^{2}) = \exp\left(-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu^{\prime 2}}{\mu^{\prime 2}}\int_{0}^{z_{M}}dz \ z \ P_{ba}^{R}(z,\alpha_{s})\right)$$

Interpretation: probability of an evolution without any resolvable branchings

Method to obtain transverse momentum dependent PDFs (TMDs) $\tilde{\mathcal{A}}_{a}(x, k_{\perp}^{2}, \mu^{2})$ and collinear PDFs $\tilde{f}_{a}(x, \mu^{2}) = \int dk_{\perp}^{2} \tilde{\mathcal{A}}_{a}(x, k_{\perp}^{2}, \mu^{2})$:

[Hautmann, Jung, Lelek, Radescu, Zlebcik, JHEP 01 (2018) 070, 1708.03279]

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu_{0}^{2}) + \sum_{b} \int \frac{d^{2}\mu_{\perp}'}{\pi\mu'^{2}} \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2})\frac{\Delta_{a}(\mu'^{2})}{\Delta_{a}(\mu'^{2})} \times \\ &\times \int_{x}^{z_{M}} dz P_{ab}^{R}(z,\alpha_{s})\tilde{\mathcal{A}}_{b}(\frac{x}{z},(k_{\perp}+(1-z)\mu_{\perp}')^{2},\mu'^{2}) \end{split}$$

P^R_{ab}(z): (real emission part of) DGLAP splitting functions: Probability that a branching will happen

b: incoming parton, a: outgoing parton, z momentum fraction of parton a to b

- $P^{R}_{ab}(z,\alpha_{s}) = \sum_{1}^{\infty} P^{(n)}_{ab}(z) \alpha_{s}^{n}$
- Sudakov form factor:

$$\Delta_{a}(\mu^{2}) = \exp\left(-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{z_{M}}dz \ z \ P_{ba}^{R}(z,\alpha_{s})\right)$$

Interpretation: probability of an evolution without any resolvable branchings

■ z_M : Soft-gluon resolution scale, separates resolvable/non-resolvable branchings Fixed (μ -independent) $z_M \approx 1 \leftrightarrow$ dynamical (μ -dependent) z_M

Method to obtain transverse momentum dependent PDFs (TMDs) $\tilde{\mathcal{A}}_{a}(x, k_{\perp}^{2}, \mu^{2})$ and collinear PDFs $\tilde{f}_{a}(x, \mu^{2}) = \int dk_{\perp}^{2} \tilde{\mathcal{A}}_{a}(x, k_{\perp}^{2}, \mu^{2})$:

[Hautmann, Jung, Lelek, Radescu, Zlebcik, JHEP 01 (2018) 070, 1708.03279]

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu_{0}^{2}) + \sum_{b} \int \frac{d^{2}\mu_{\perp}'}{\pi\mu'^{2}} \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2})\frac{\Delta_{a}(\mu'^{2})}{\Delta_{a}(\mu'^{2})} \times \\ &\times \int_{x}^{z_{M}} dz P_{ab}^{R}(z,\alpha_{s})\tilde{\mathcal{A}}_{b}(\frac{x}{z},(k_{\perp}+(1-z)\mu_{\perp}')^{2},\mu'^{2}) \end{split}$$

P^R_{ab}(z): (real emission part of) DGLAP splitting functions: Probability that a branching will happen

b: incoming parton, a: outgoing parton, z momentum fraction of parton a to b

- $P^{R}_{ab}(z,\alpha_{s}) = \sum_{1}^{\infty} P^{(n)}_{ab}(z) \alpha_{s}^{n}$
- Sudakov form factor:

$$\Delta_{a}(\mu^{2}) = \exp\left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{0}^{z_{M}} dz \ z \ P_{ba}^{R}(z, \alpha_{s})\right)$$

Interpretation: probability of an evolution without any resolvable branchings

- z_M : Soft-gluon resolution scale, separates resolvable/non-resolvable branchings Fixed (μ -independent) $z_M \approx 1 \leftrightarrow$ dynamical (μ -dependent) z_M
- Angular Ordering (AO): evolution scale $\mu' = \frac{q_{\perp}}{1-z}$, q_{\perp} transverse momentum emitted parton

Method to obtain transverse momentum dependent PDFs (TMDs) $\tilde{\mathcal{A}}_{a}(x, k_{\perp}^{2}, \mu^{2})$ and collinear PDFs $\tilde{f}_{a}(x, \mu^{2}) = \int dk_{\perp}^{2} \tilde{\mathcal{A}}_{a}(x, k_{\perp}^{2}, \mu^{2})$:

[Hautmann, Jung, Lelek, Radescu, Zlebcik, JHEP 01 (2018) 070, 1708.03279]

$$\begin{split} \tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu^{2}) &= \Delta_{a}(\mu^{2})\tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu_{0}^{2}) + \sum_{b} \int \frac{d^{2}\mu_{\perp}'}{\pi\mu'^{2}} \Theta(\mu^{2}-\mu'^{2})\Theta(\mu'^{2}-\mu_{0}^{2})\frac{\Delta_{a}(\mu'^{2})}{\Delta_{a}(\mu'^{2})} \times \\ &\times \int_{x}^{z_{M}} dz P_{ab}^{R}(z,\boldsymbol{\alpha_{s}})\tilde{\mathcal{A}}_{b}(\frac{x}{z},(k_{\perp}+(1-z)\mu_{\perp}')^{2},\mu'^{2}) \end{split}$$

P^R_{ab}(z): (real emission part of) DGLAP splitting functions: Probability that a branching will happen

b: incoming parton, a: outgoing parton, z momentum fraction of parton a to b

- $P^{R}_{ab}(z, \alpha_{s}) = \sum_{1}^{\infty} P^{(n)}_{ab}(z) \alpha_{s}^{n}$
- Sudakov form factor:

$$\Delta_{a}(\mu^{2}) = \exp\left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \int_{0}^{z_{M}} dz \ z \ P_{ba}^{R}(z, \alpha_{s})\right)$$

Interpretation: probability of an evolution without any resolvable branchings

- z_M : Soft-gluon resolution scale, separates resolvable/non-resolvable branchings Fixed (μ -independent) $z_M \approx 1 \leftrightarrow$ dynamical (μ -dependent) z_M
- Angular Ordering (AO): evolution scale $\mu' = \frac{q_{\perp}}{1-z}$, q_{\perp} transverse momentum emitted parton
- $\alpha_s(\mu) \leftrightarrow \alpha_s(q_\perp)$

Other studies with PB

 Studies on the dynamical resolution scale and comparison between single versus multiple emission methods [Hautmann, Keersmaekers, Lelek, van

Kampen, Nucl.Phys.B 949 (2019) 114795]

Including EW corrections in evolution equations and determination of photon TMD

[Jung, Taheri Monfared, Wening, Phys.Let.B 817 (2021), 136299, arXiv:2102.01494]

- Studies on the 4 and 5 Flavor Variable Number Scheme and Z + heavy flavour events, [Jung, Taheri Monfared, arXiv:2106.09791], [Baranov, Bermudez Martinez, Jung, Lipatov, Malyshev, Taheri Monfared, EPJC 82 (2022), 157]
- Extraction of the CS Kernel from PB predictions [Bermudez Martinez, Vladimirov, Phys.Rev.D 106 (2022) 9, L091501, arXiv:2206.01105]
- Studies on intrinsic k_{\perp} (to be published soon)
- Studies on Sudakov resummation in PB, including studies on non-perturbative Sudakov form factor and studies on NNLL resummation
- Ongoing/planned projects with fits: Fits with dynamical resolution scale, LO fits, global fits, fits of intrinsic k_⊥,...

TMD evolution equations:

 $\tilde{\mathcal{A}}:$ Momentum weighted TMD

$$\tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu^{2}) = \tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu_{0}^{2}) - \int \frac{d^{2}\mu_{\perp}^{\prime}}{\pi\mu_{\perp}^{\prime \prime 2}} F_{a}(\mu_{\perp}^{\prime 2},k_{\perp}^{2}) \tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu_{\perp}^{\prime 2}) \Theta(\mu_{\perp}^{\prime 2}-\mu_{0}^{2}) \Theta(\mu^{2}-\mu_{\perp}^{\prime 2}) +$$

$$+\sum_{b}\int \frac{d^{2}\mu'_{\perp}}{\pi\mu'_{\perp}^{2}}\int_{x}^{-M} dz \tilde{P}_{ab}^{R}(z,k_{\perp}+(1-z)\mu'_{\perp},\mu'_{\perp})\tilde{\mathcal{A}}_{b}\left(\frac{x}{z},(k_{\perp}+(1-z)\mu'_{\perp})^{2},\mu'^{2}\right)\Theta(\mu'_{\perp}^{2}-\mu_{0}^{2})\Theta(\mu^{2}-\mu'_{\perp}^{2})$$

TMD evolution equations:

 $\tilde{\mathcal{A}}$: Momentum weighted TMD

$$\tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu^{2}) = \tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu_{0}^{2}) - \int \frac{d^{2}\mu_{\perp}'}{\pi\mu_{\perp}'^{2}} F_{a}(\mu_{\perp}'^{2},k_{\perp}^{2})\tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu_{\perp}'^{2})\Theta(\mu_{\perp}'^{2}-\mu_{0}^{2})\Theta(\mu^{2}-\mu_{\perp}'^{2}) + \frac{1}{2} \left(\frac{d^{2}\mu_{\perp}'}{d^{2}\mu_{\perp}'}\right) + \frac{1}{2} \left(\frac{d^{2}\mu_{\perp}}{d^{2}\mu_{\perp}'}\right) + \frac{1}{2} \left(\frac{d^{2}\mu_{\perp}}{d^{2}\mu_{$$

 $+\sum_{b}\int \frac{d^{2}\mu_{\perp}'}{\pi\mu_{\perp}'^{2}}\int_{x}^{zM} dz \tilde{P}_{ab}^{R}(z, k_{\perp} + (1-z)\mu_{\perp}', \mu_{\perp}')\tilde{\mathcal{A}}_{b}\left(\frac{x}{z}, (k_{\perp} + (1-z)\mu_{\perp}')^{2}, {\mu'}^{2}\right)\Theta(\mu_{\perp}'^{2} - \mu_{0}^{2})\Theta(\mu_{\perp}^{2} - \mu_{\perp}'^{2})$

Real emissions

TMD evolution equations:

 $\tilde{\mathcal{A}}:$ Momentum weighted TMD

$$\tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu^{2}) = \tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu_{0}^{2}) - \int \frac{d^{2}\mu_{\perp}^{\prime}}{\pi\mu_{\perp}^{\prime 2}} \boldsymbol{F}_{a}(\mu_{\perp}^{\prime 2},k_{\perp}^{2}) \tilde{\mathcal{A}}_{a}(x,k_{\perp}^{2},\mu_{\perp}^{\prime 2}) \Theta(\mu_{\perp}^{\prime 2}-\mu_{0}^{2}) \Theta(\mu_{\perp}^{2}-\mu_{\perp}^{\prime 2}) + \mathcal{A}_{a}(x,k_{\perp}^{2},\mu_{\perp}^{\prime 2}) \Theta(\mu_{\perp}^{\prime 2}-\mu_{0}^{\prime 2}) \Theta(\mu_{\perp}^{\prime 2}-\mu_{\perp}^{\prime 2}) + \mathcal{A}_{a}(x,k_{\perp}^{2},\mu_{\perp}^{\prime 2}) \Theta(\mu_{\perp}^{\prime 2}-\mu_{0}^{\prime 2}) \Theta(\mu_{\perp}^{\prime 2}-\mu_{\perp}^{\prime 2}) + \mathcal{A}_{a}(x,k_{\perp}^{2},\mu_{\perp}^{\prime 2}) \Theta(\mu_{\perp}^{\prime 2}-\mu_{0}^{\prime 2}) \Theta(\mu_{\perp}^{\prime 2}-\mu_{\perp}^{\prime 2}) \Theta(\mu_{\perp}^{\prime 2}-\mu_{0}^{\prime 2}) \Theta(\mu_{\perp}^{\prime 2}-\mu_{\perp}^{\prime 2})) \Theta(\mu_{\perp}^{\prime$$

$$+\sum_{b}\int \frac{d^{2}\mu'_{\perp}}{\pi\mu'_{\perp}^{2}}\int_{x}^{zM} dz \tilde{P}_{ab}^{R}(z,k_{\perp}+(1-z)\mu'_{\perp},\mu'_{\perp})\tilde{\mathcal{A}}_{b}\left(\frac{x}{z},(k_{\perp}+(1-z)\mu'_{\perp})^{2},\mu'^{2}\right)\Theta(\mu'_{\perp}^{2}-\mu_{0}^{2})\Theta(\mu^{2}-\mu'_{\perp}^{2})$$

- Real emissions
- Virtual/Non-resolvable emissions

TMD evolution equations:

 $\tilde{\mathcal{A}}$: Momentum weighted TMD

$$\tilde{\mathcal{A}}_{a}(\mathbf{x}, k_{\perp}^{2}, \mu^{2}) = \tilde{\mathcal{A}}_{a}(\mathbf{x}, k_{\perp}^{2}, \mu_{0}^{2}) - \int \frac{d^{2}\mu_{\perp}'}{\pi \mu_{\perp}'^{2}} \mathbf{F}_{a}(\mu_{\perp}'^{2}, k_{\perp}^{2}) \tilde{\mathcal{A}}_{a}(\mathbf{x}, k_{\perp}^{2}, \mu_{\perp}'^{2}) \Theta(\mu_{\perp}'^{2} - \mu_{0}^{2}) \Theta(\mu_{\perp}'^{2} - \mu_{\perp}'^{2}) + \mathcal{A}_{a}(\mathbf{x}, k_{\perp}^{2}, \mu_{\perp}'^{2}) \Theta(\mu_{\perp}'^{2} - \mu_{0}'^{2}) \Theta(\mu_{\perp}'^{2} - \mu_{\perp}'^{2}) + \mathcal{A}_{a}(\mathbf{x}, k_{\perp}^{2}, \mu_{\perp}'^{2}) \Theta(\mu_{\perp}'^{2} - \mu_{\perp}'^{2}) \Theta(\mu_{\perp}'^{2} - \mu_{\perp}'^{2}) + \mathcal{A}_{a}(\mathbf{x}, k_{\perp}'^{2}, \mu_{\perp}'^{2}) \Theta(\mu_{\perp}'^{2} - \mu_{\perp}'^{2}) \Theta(\mu_{\perp}'^{2} - \mu_{\perp}'^{2}) + \mathcal{A}_{a}(\mathbf{x}, k_{\perp}'^{2}, \mu_{\perp}'^{2}) \Theta(\mu_{\perp}'^{2} - \mu_{\perp}'^{2}) \Theta(\mu_{\perp}'^{2} - \mu_{\perp}'^{2}) + \mathcal{A}_{a}(\mathbf{x}, \mu_{\perp}'^{2}) \Theta(\mu_{\perp}'^{2} - \mu_{\perp}'^{$$

 $+\sum_{b}\int \frac{d^{2}\mu_{\perp}'}{\pi\mu_{\perp}'^{2}}\int_{x}^{2M} dz \tilde{P}_{ab}^{R}(z, k_{\perp} + (1-z)\mu_{\perp}', \mu_{\perp}')\tilde{\mathcal{A}}_{b}\left(\frac{x}{z}, (k_{\perp} + (1-z)\mu_{\perp}')^{2}, \mu'^{2}\right)\Theta(\mu_{\perp}'^{2} - \mu_{0}^{2})\Theta(\mu_{\perp}'^{2} - \mu_{\perp}'^{2})$

- Real emissions
- Virtual/Non-resolvable emissions ⇒ Fix with momentum conservation:

$$0 = \sum_{a} \int_0^1 dx \int dk_\perp^2 \tilde{\mathcal{A}}_a(x, k_\perp^2, \mu^2) - \sum_{a} \int_0^1 dx \int dk_\perp^2 \tilde{\mathcal{A}}_a(x, k_\perp^2, \mu_0^2).$$

$$\overrightarrow{F_{a}(\mu'^{2},k_{\perp}^{2})} = \sum_{b} \int_{0}^{z_{M}} dz \ z \overline{P}_{ba}^{R}(z,k_{\perp}^{2},\mu'^{2})$$

 $\bar{P}^{R}_{ba}(z,k_{\perp}^{2},\mu'^{2})$: Angular averaged TMD splitting functions

Unitarity (2)

Introduce TMD Sudakov form factors:

$$\Delta_{a}(\mu^{2},k_{\perp}^{2}) = \exp\left(-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{z_{M}}dz \ z\bar{P}_{ba}^{R}(z,k_{\perp}^{2},\mu'^{2})\right)$$

Rewrite the evolution equation:

$$\begin{split} \tilde{\mathcal{A}}_{a}\left(x,k_{\perp}^{2},\mu^{2}\right) &= \Delta_{a}\left(\mu^{2},k_{\perp}^{2}\right)\tilde{\mathcal{A}}_{a}\left(x,k_{\perp}^{2},\mu_{0}^{2}\right) + \sum_{b}\int\frac{d^{2}\mu_{\perp}'}{\pi\mu_{\perp}'^{2}}\Theta(\mu_{\perp}'^{2}-\mu_{0}^{2})\Theta(\mu^{2}-\mu_{\perp}'^{2})\\ &\times \int_{x}^{z_{M}} \mathrm{d}z \,\frac{\Delta_{a}\left(\mu^{2},k_{\perp}^{2}\right)}{\Delta_{a}\left(\mu_{\perp}'^{2},k_{\perp}^{2}\right)}\tilde{P}_{ab}^{R}\left(z,k_{\perp}+(1-z)\mu_{\perp}',\mu_{\perp}'\right)\tilde{\mathcal{A}}_{b}\left(\frac{x}{z},(k_{\perp}+(1-z)\mu_{\perp}')^{2},\mu_{\perp}'^{2}\right) \end{split}$$

Unitarity (2)

Introduce TMD Sudakov form factors:

$$\Delta_{a}(\mu^{2},k_{\perp}^{2}) = \exp\left(-\sum_{b}\int_{\mu_{0}^{2}}^{\mu^{2}}\frac{d\mu'^{2}}{\mu'^{2}}\int_{0}^{z_{M}}dz \ z\bar{P}_{ba}^{R}(z,k_{\perp}^{2},\mu'^{2})\right)$$

Rewrite the evolution equation:

$$\begin{split} \tilde{\mathcal{A}}_{a}\left(x,k_{\perp}^{2},\mu^{2}\right) &= \Delta_{a}\left(\mu^{2},k_{\perp}^{2}\right)\tilde{\mathcal{A}}_{a}\left(x,k_{\perp}^{2},\mu_{0}^{2}\right) + \sum_{b}\int\frac{d^{2}\mu_{\perp}'}{\pi\mu_{\perp}'^{2}}\Theta(\mu_{\perp}'^{2}-\mu_{0}^{2})\Theta(\mu^{2}-\mu_{\perp}'^{2})\\ &\times \int_{x}^{z_{M}} \mathrm{d}z \,\frac{\Delta_{a}\left(\mu^{2},k_{\perp}^{2}\right)}{\Delta_{a}\left(\mu_{\perp}'^{2},k_{\perp}^{2}\right)}\tilde{P}_{ab}^{R}\left(z,k_{\perp}+(1-z)\mu_{\perp}',\mu_{\perp}'\right)\tilde{\mathcal{A}}_{b}\left(\frac{x}{z},(k_{\perp}+(1-z)\mu_{\perp}')^{2},\mu_{\perp}'^{2}\right) \end{split}$$

Equation has similar structure to other Parton Branching equations [arXiv:1704.01757, arXiv:1708.03279] \rightarrow similar MC Except for scale generation according to TMD Sudakov form factor: VETO algorithm [arXiv:hep-ph/0603175]

