Rethinking running coupling in JIMWLK/BK

Vladi Skokov (Phys. Dep., NC State University and RBRC, Brookhaven National Laboratory)

A. Kovner, M. Lublinsky, and V. S.; in preparation, 2023

QCD Evolution 2023

Introduction and motivation

• Small-x evolution: BFKL \rightarrow BK \rightarrow JIMWLK

 $Talks\ by\ Mehtar\text{-}Tani\ \ \mathcal{C}\ Boussarie$

- JIMWLK allows to evolve arbitrary combination of many Wilson lines without large N_c approximation
- \bullet NLO JIMWLK equation was derived \approx 10 years ago

Kovner, Lublinsky & Mulian (2013), Balitsky & Chirilli (2007), Grabovsky (2013); ML & Mulian (2016)

◆ Large transverse logs in NLO JIMWLK/BK: improvements are necessary

 $Altinoluk,\ Armesto,\ Beuf\ Hatta,\ Iancu,\ Lublinsky,\ M\"{u}ller,\ Stasto,\ Triantafyllopoulos,\ Xiao,\ \dots$

- The principal part: large logs multiplied by QCD β -function
- Resummation of these logs led to r.c. BK with generalization to r.c. JIMWLK

Balitsky, Kovchegov & Weigert, ...

- There has been no r.c. JIMWLK implementation that would explicitly reproduce any specific r. c. prescription consistent with NLO JIMWLK
- ♦ All known r. c. prescriptions violate semi-positivity of JIMWLK Hamiltonian

Punchline

- In NLO JIMWLK, not all large logs with QCD β -function belong in running coupling
- Subset of the logs comes from DGLAP evolution of the projectile
- \bullet Why misidentification? Integral of DGLAP splitting function \propto QCD $\beta\text{-function}$
- We identified both types of logs, and provided a scheme for their resummation:
 - DGLAP logs \sim evolution equation for JIMWLK kernel
 - r. c. logs \sim simple scale for the QCD running coupling
- \bullet This procedure leads to semi-positive definite JIMWLK Hamiltonian

LO JIMWLK Hamiltonian

• LO JIMWLK Hamiltonian $\partial \mathcal{O}/\partial Y = -\mathcal{H}^{\text{JIMWLK}}\mathcal{O}$

$$\mathcal{H}_{\text{LO}}^{\text{JIMWLK}} = \int_{x,y,z} K_{\text{LO}} \left[J_L^a(x) J_L^a(y) + J_R^a(x) J_R^a(y) - 2J_L^a(x) S^{ab}(z) J_R^b(y) \right]$$

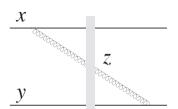
$$K_{\text{LO}}(x,y,z) = \frac{\alpha_s}{2\pi^2} \frac{(x-z)_i (y-z)_i}{(x-z)^2 (y-z)^2} \equiv \frac{\alpha_s}{2\pi^2} \frac{X \cdot Y}{X^2 Y^2}$$

Eikonal propagation through target

$$S(z) = \mathcal{P} \exp \left(ig \int dz^+ A^-(z_+, z) \right)$$

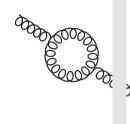
• Lee derivatives

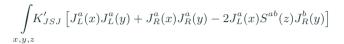
$$J_L^a(x)S(z) = T^a S(x)\delta^{(2)}(x-z)$$
 $J_R^a(x) = S^{\dagger ab}(x)J_L^b(x)$



NLO JIMWLK Hamiltonian: UV divergent contributions

NLO JIMWLK Hamiltonian: UV divergent contributions I





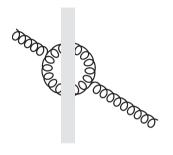
$$K'_{JSJ} = K_{LO} \frac{\alpha \beta_0}{4\pi} \left(\ln \left(X^2 \mu^2 \right) + \ln \left(Y^2 \mu^2 \right) \right) + \dots$$

- ♦ The structure similar to the leading order
- \bullet Proportional to the WW kernel $\frac{X \cdot Y}{X^2 Y^2}$
- ullet No reasonable r. c. prescription, as the number of UV logs is twice as many

$$\alpha(X^2) \to \alpha \left(1 + \frac{\alpha \beta_0}{4\pi} \ln X^2 \mu^2\right)$$

• Forcing r. c. would lead to $\frac{\alpha(X^2)\alpha(Y^2)}{\alpha}$

NLO JIMWLK Hamiltonian: UV divergent contributions II



$$\int\limits_{x\,y\,z\,z'} K_{JSSJ} f^{abc} f^{def} J_L^a(x) S^{be}(z) S^{cf}(z') J_R^d(y)$$

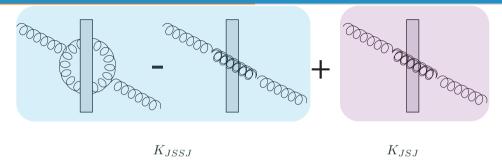
• When $z' \to z$, $f^{abc} f^{def} S^{be}(z) S^{cf}(z') \to N_c S^{ad}(z)$

♦ In the coincidence limit, integral of JSSJ kernel contains wanted UV singularity

$$N_c \int_{\mathbf{z}'} K_{JSSJ} = \frac{\alpha_s}{2\pi^2} \frac{\alpha_s \beta_0}{4\pi} \left(\frac{1}{X^2} \ln \left(X^2 \mu^2 \right) + \frac{1}{Y^2} \ln \left(Y^2 \mu^2 \right) + \frac{(X - Y)^2}{X^2 Y^2} \ln \left(\frac{(X - Y)^2}{X^2 Y^2 \mu^2} \right) \right) + \dots$$

• Strategy is to shift UV divergent "single gluon" scattering part to K_{JSJ}

NLO JIMWLK Hamiltonian: UV divergent contributions



- ✓ No UV divergence in K_{JSSJ}
- ✓ Allows for r. c. in K_{JSJ} : cancel an extra $\ln \mu^2$
- X UV-finite pieces, including potentially large logarithms, are not uniquely defined. Dependence on the coordinate of the subtraction point
- All logarithms multiplying β_0 were attributed to r. c.

This led to Balitsky and Kovchegov-Weigert r. c. prescriptions.

Dressed gluon state

- ullet K'_{JSJ} : production of a bare gluon state from the valence charge
- r. c. in QFT: the matrix element of the interaction Hamiltonian b/w dressed states
- ullet Gluon wave function renormalization at arbitrary scale Q in one loop

$$Z^{1/2}(Q^2) = 1 + \frac{\alpha_s}{8\pi} \beta_0 \ln \frac{Q^2}{\mu^2}$$

and associated renormalized gluon field

$$A^{Q}_{\mu}(x) = Z^{-1/2}(Q^2)A_{\mu}(x)$$

- LO kernel of JIMWLK Hamiltonian is to be multiplied by $Z^{-1/2}(Q^2)$
- This will lead to the modification of NLO:

$$K'_{JSJ} \to K_{LO} \frac{\alpha_s \beta_0}{4\pi} \left(\ln(X^2 \mu^2) + \ln(Y^2 \mu^2) - \ln \frac{\mu^2}{Q^2} + \ldots \right)$$

DGLAP splitting

- UV divergence of K_{JSSJ} $\left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array}\right)$ is to cancel if JIMWLK Hamiltonian is reformulated in terms of dressed gluon amplitude
- At NLO the dressed gluon state contains a two-gluon (and $q \bar{q}$) component due to gluon splitting; to be included in the definition of the dressed gluon scattering amplitude
- For splitting to two gluons

$$\mathbb{S}_{Q}^{ab}(z) = S^{ab}(z) + \frac{\alpha_{s}}{2\pi^{2}} \int d\xi \frac{1}{\xi_{+}(1-\xi)_{+}} \left(\xi^{2} + (1-\xi)^{2} + \xi^{2}(1-\xi)^{2}\right)$$

$$\times \int_{Z}^{Q^{-1}} \frac{1}{Z^{2}} \left(\frac{\text{Tr}[T^{a}S(z + (1-\xi)Z)T^{b}S^{+}(z - \xi Z)] - N_{c}S^{ab}(z)}{D_{ab}(z + (1-\xi)Z, z - \xi Z)} \right)$$
Last term: $\frac{\alpha\beta_{0}}{4\pi} \ln \frac{\mu^{2}}{Q^{2}} S^{ab}(z)$

Expressing LO JIMWLK in terms of \mathbb{S}_Q cancels UV divergence of K_{JSSJ} in NLO

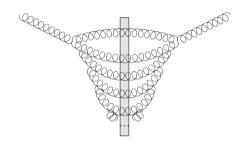
Resolution scale independence and RG

 Promoting to closed equation describing multiple consecutive DGLAP splittings

$$\frac{\partial \mathbb{S}_Q(z)}{\partial \ln Q^2} = -\alpha_s \int_{\xi} \sigma(\xi) \left(\mathbb{D}_Q - \mathbb{S}_Q(z) \right)$$

 \bullet Independence of the introduced scale, Q:

$$\frac{dH}{d\ln Q} = \frac{\partial H}{\partial \ln Q} + \int_u \left[\frac{\delta H}{\delta \mathbb{S}_Q(u)} \frac{\partial \mathbb{S}_Q(u)}{\partial \ln Q} \right] = 0$$



Initial conditions and r. c.

• Initial conditions: at $Q_{\rm in} = Q_s^P$

$$\mathcal{H}_{\text{in}} = \int K_{\text{in}} \left[\left\{ \mathbb{S}_{Q_{\text{in}}}(z) - \mathbb{S}_{Q_{\text{in}}}(x) \right\} \left\{ \mathbb{S}_{Q_{\text{in}}}(z) - \mathbb{S}_{Q_{\text{in}}}(y) \right\}^{\dagger} \right]^{ab} J_L^a(x) J_L^b(y)$$

• The kernel at this scale is given by

$$K_{\rm in} = \frac{\alpha_s^{\lambda}(X^2) \, \alpha_s^{\lambda}(Y^2) \alpha_s^{1-2\lambda}(XY)}{2\pi^2} \, \frac{X \cdot Y}{X^2 Y^2} \, [1 + \text{ small NLO corrections}]$$

and does not contain large logs, as $Q_s^P|X| \sim 1$

 λ is not uniquely fixed by NLO; $\lambda = 1/2$ is our preference; $\lambda = 1$ is "triumvirate" form

• Evolve up to $Q_f = Q_s^T$

Dilute/BFKL regime

• Initial JIMWLK kernel is convenient to write in the form:

$$\mathcal{H}_{\text{in}} \propto \int_{\substack{x,y,z,z_1,z_2 \\ x,y,z,z_1,z_2}} \frac{X \cdot Y}{X^2 Y^2} \left(\int_{\substack{\delta_{z_1,z_2} \\ \delta(z_1-z_2)}} \delta_{z_1,z} + \delta_{x,z_1} \delta_{y,z_2} - \delta_{x,z_1} \delta_{z,z_2} - \delta_{y,z_2} \delta_{z,z_1} \right) \left[\mathbb{S}_{Q_0}(z_1) \mathbb{S}_{Q_0}^{\dagger}(z_2) \right]^{ab} J_L^a(x) J_L^b(y)$$

• DGLAP evolution leads to smearing of δ -functions

$$\mathcal{H}_{Q} \propto \int\limits_{x,y,z,z_{1},z_{2}} \frac{X \cdot Y}{X^{2}Y^{2}} \Big(\underbrace{r_{z_{1},z_{2}}}_{r(z_{1}-z_{2})} r_{z_{1},z} + r_{x,z_{1}} r_{y,z_{2}} - r_{x,z_{1}} r_{z,z_{2}} - r_{y,z_{2}} r_{z,z_{1}} \Big) \, \left[\mathbb{S}_{Q}(z_{1}) \mathbb{S}_{Q}^{\dagger}(z_{2}) \right]^{ab} J_{L}^{a}(x) \, J_{L}^{b}(y)$$

 \bullet r function:

$$r(z) = \begin{cases} \delta(z), & \text{for } z > 1/Q_s^P \\ \frac{1}{z^2} \left[\left(\frac{1}{zQ_s^P} \right)^{\frac{\alpha_s \beta_0}{2\pi}} - 1 \right], & \text{for } 1/Q_s^P > z > 1/Q_s^T \\ \left[\left(\frac{Q_s^T}{Q_s^P} \right)^{\frac{\alpha_s \beta_0}{2\pi}} - 1 \right], & \text{for } z < 1/Q_s^T \end{cases}$$

Saturation regime

- Target saturation momentum plays two roles:
 - provides correlation length for Wilson lines
 - provides color neutralization scale: a Wilson line separated from the rest by a distance greater than $1/Q_s$ is vanishingly small
- For evolution in distance range from $1/Q_s^P$ to $1/Q_s^T$, neglect quadratic term in DGLAP evolution $\mathbb{D}_Q N_c \mathbb{S}_Q(z) \to -N_c \mathbb{S}_Q(z)$
- The kernel is

$$K_Q = \left[\frac{Q_s^T}{Q_s^P}\right]^{\frac{\alpha_s}{2\pi}b} K_{in}$$

Interpolating equation between two regimes

- \bullet Explicit solutions in dilute and saturation regime of DGLAP provided us with Q-dependent kernel for JIMWLK Hamiltonian
- \bullet For practical implementation, an interpolating equation is needed

Conclusions

- Not all large logs of NLO JIMWLK multiplying QCD β -function belong to running coupling
- Subset of the logs comes from DGLAP evolution of the projectile
- We identified both types of logs, and provided the scheme for their resummation:
 - DGLAP logs \sim evolution equation for JIMWLK kernel
 - r. c. logs \leadsto simple scale for the QCD running coupling
- ♦ This procedure leads to semi-positive definite JIMWLK Hamiltonian